Abstract:
We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
Abstract:
A process is provided for upgrading an oligomerization product through hydrogenation and isomerization with some selective/minor cracking resulting in a synthetic lube base oil with improved pour point and viscosity index. The upgrading process includes contacting the oligomerization product with a hydrogenation catalyst and an isomerization catalyst under conversion conditions, which include the presence of hydrogen and a temperature sufficient to promote hydrogenation and isomerization with some selective/minor cracking. The hydrogenation catalyst contains a porous carrier material and a group VIII metal while the isomerization catalyst contains an aluminosilicate zeolite.
Abstract:
A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
Abstract:
A process in which a hydrocarbon feedstock containing n-butane is selectively dehydrogenated to a product containing butenes. A catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes. A method for producing a catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes.
Abstract:
A hydrocarbon conversion process in which the rate of coke formation is reduced without a significant sacrifice in light olefin and BTX yield by the use of a silylated, stabilized metal promoted zeolite catalyst. Another embodiment includes a novel silylated spinel/zeolite catalyst. Another embodiment includes a process for producing a zinc or gallium promoted zeolite in which the promoter is stabilized by a high temperature water vapor treatment in the presence of a metal oxide such as alumina and thereafter the stabilized catalyst precursor is calcined and silylated.
Abstract:
A process in which a hydrocarbon feedstock containing n-butane is selectively dehydrogenated to a product containing butenes; a catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes and a method for producing a catalyst suitable for the selective dehydrogenation of a feedstock containing n-butane to provide a product containing butenes are provided.
Abstract:
A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
Abstract:
A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
Abstract:
A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises a zeolite, a metal oxide, and an activity modifier selected from the group consisting of silicon oxides, sulfur oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.
Abstract:
A composition is prepared by a method which comprises mixing a first solid material comprising a platinum group metal, a rhenium component, a porous carrier material and, optionally, a halogen component and a second solid material comprising silica and bismuth. The thus-obtained composition is employed as a catalyst in the conversion of hydrocarbons to aromatics.In an alternate embodiment, hydrocarbons are converted to aromatics by sequentially contacting the hydrocarbons with the first solid material and then the second solid material.