摘要:
A method of dynamically allocating bandwidth of channels to cells in a communications cellular network according to user demand. Groups of cells are formed so as to minimize interference within each group, and a particular channel is assigned to each of the groups. The bandwidth of each channel then is dynamically allocated by time division to each of the cells in the assigned group according to user demand in each of the cells thereof.
摘要:
A communications network having a number of routers, a number of base stations and a number of mobile units maintains communications with the mobile units by assigning a unique address known to the routing entities of the network to each mobile unit. By including the mobile units unique address in topology updates of the network, the location of the mobile unit at any time is made known to all routers of the network. That is, once a mobile unit moves into a domain of a new access point and establishes a new link with the new access point, it uses the topology update mechanism of the network to make its new location known to all routers. Once a router of the network receives topology update information specific to the mobile unit's new location, it updates its routing table such that packets destined to the mobile unit are routed in a path which terminates at the mobile unit and contains its new access point.
摘要:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radioLAN using frequency hopping signaling. The method allows reuse of a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
摘要:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radio LAN using frequency hopping signaling. The method allows to reuse a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
摘要:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radio LAN using frequency hopping signaling. The method allows reuse of a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
摘要:
A Medium Access (MAC) Protocol is utilized for wireless radio access for a plurality of remote stations to a base station on a LAN. There is a time division fixed frame structure in which time is slotted, and time slots are grouped into fixed frames consisting of data and control subframes or periods. The fixed frame structure consists of three periods (A, B, and C) along with their respective headers. The first period, the A period, is used exclusively for data transfer from the base station to the remote stations. The following period, the B period, is used for contention-free data transfer from the remote stations to the base station. The allocation of the data slots in the A and B periods is performed by the base station. The last period of the frame, designated as the C period, is used for the transmission of reservation requests and data from the remote stations to the base station in a random-access contention mode using a slotted Aloha protocol. The duration of the three periods may be varied using a movable boundary technique.
摘要:
An exemplary embodiment uses a novel adaptation of a tree splitting algorithm applied to Radio Frequency (RE) tagging technology to identify many tags in the RF field of a base station. The embodiment uses the tree splitting algorithm to identify a single tag in a field of a plurality of radio frequency tags. Once the single tag is identified, the identified tag is placed in a Data_Exchange state where the base station can access data from the tag memory by using information that identifies the tag.
摘要:
The present invention is an apparatus for controlling client node access to data items maintained in a storage device. The data items include volatile data items. The apparatus comprises a communication device for communicating with multiple client nodes; and a processor, coupled to the storage device for polling the client nodes to exchange (e.g., retrieve and/or transmit) data related to the volatile data items, via the communication device. The processing system further controls client node access to the data items of the storage device. In this way, the apparatus and method of the present invention remedies the problems associated with directory server overload.
摘要:
A method of controlling packet traffic in an IP network of originating, receiving and intermediate nodes to meet performance objectives established by service level agreements. Traffic statistics and performance data such as delay and loss rates relating to traffic flows are collected at intermediate nodes. A control server processes the collected data to determines data flow rates for different priorities of traffic. A static directory node is used to look up inter-node connections and determine initial traffic classes corresponding to those connections. The rates are combined with the initial traffic classes to define codes for encoding the headers of packets to determine their network priority.
摘要:
A method, apparatus and system is provided by which two or more cooperating end-users of the Internet and/or other network can dynamically select and use a single Internet or other network service provider (ISP) from among a multitude of ISPs based on the application requirements. The service provider may be selected in a dynamic fashion. This overcomes the problem wherein traditionally most end-users, whether they are individuals or organizations, are connected to the Internet or other network through a single Internet and/or other network service provider. However, users generally may have more than a single connection to the Internet and/or other network. In such cases the routing of traffic over these multiple connections is handled by IP routers based on the routing information that they exchange with their peers. This information is relatively static in nature and is typically based on the state of links that interconnect the different routers. The invention provides a mechanism for the end-user to take advantage of different rates or services that might be provided by competing Internet and/or other network service providers. Furthermore, there are cases where the choice of which provider to use depends on the application. Thus this invention enables cooperating users (or sites of an organization) to dynamically select different providers on an application by application basis.