Abstract:
The present invention is directed to a maze book comprising a plurality of pages including a last page, a binding, and a maze comprising a starting location and pathways to choose to solve the maze, wherein each page comprises a front page and a back page, wherein the front page and back page each comprise a partial maze comprising a pathway, the partial maze incapable of being solved on its own on the front page, and an indicator wherein the page can be altered to align the indicator on the back page to the indicator on the front page; wherein each page is aligned with the back page, using the indicator, so that the pathway of the partial maze on the front page will align with the pathway of the partial maze on the back page; and wherein the pathway of the partial maze on the back page will be aligned to the pathway of the partial maze on the front page of the next page, through a gap made visible by the fold; wherein the partial mazes of the pages can be interconnected and the maze solved.
Abstract:
An ion mobility spectrometer has an inlet for an analyte substance opening into an ionization region that produces ions of the substance. Parallel grid electrodes extend laterally across the ion flow path and apply an electric field to the ions that is switchable between a relatively low magnitude alternating field that varies in magnitude over multiple periods and an asymmetric alternating field of sufficiently high magnitude to cause differential mobility effects. A collector collects the passed ions, and an indication of the nature of the analyte substance is produced from the collected ions passed during both the low and high field intervals. Also disclosed is the application of a substantially alternating field between the electrodes, which field varies between a low value and a higher value over a time exceeding that of the alternating period.
Abstract:
A detection system comprises a housing having a sample inlet and a gas outlet, and a preconcentrator. The preconcentrator can include a microelectromechanical system (MEMS) configured to accumulate or release a dopant at selected times, and can be located inside or outside the housing. The detection system can include an ion mobility spectrometer, a mass spectrometer, or a combination thereof. A method of analyzing a substance comprises supplying a sample gas or vapor comprising the substance, accumulating a dopant in a first preconcentrator, releasing the dopant at selected times from the preconcentrator to an area containing the sample, ionizing the substance to generate detectable species, separating the detectable species, and determining the detectable species by a detection unit. The system and method allow the rapid introduction and removal of dopant to facilitate fast and accurate identification of the sample.
Abstract:
An ion mobility spectrometer has an inlet for an analyte substance opening into an ionization region that produces ions of the substance. Parallel grid electrodes extend laterally across the ion flow path and apply an electric field to the ions that is switchable between a relatively low magnitude alternating field that varies in magnitude over multiple periods and an asymmetric alternating field of sufficiently high magnitude to cause differential mobility effects. A collector collects the passed ions, and an indication of the nature of the analyte substance is produced from the collected ions passed during both the low and high field intervals. Also disclosed is the application of a substantially alternating field between the electrodes, which field varies between a low value and a higher value over a time exceeding that of the alternating period.
Abstract:
The orientation of a machine 2 relative to a work-piece 10 is manually controlled by means of an alignment device 4. The device 4 includes a light source 24 rigidly attached to a foot 12 that is resiliently movably attached to the main body 18 of the device. The body 18 of the device 4 houses a light detector 26 for detecting a light beam from the light source 24, the position of the region on the detector 26 illuminated by the beam depending on the orientation of the machine 2 relative to the work-piece 10. The operator is provided with feedback on whether the machine 2 is correctly aligned with a target orientation (usually perpendicular to the surface) and concerning the direction of corrective movement required, if any.
Abstract:
An ion mobility spectrometer system comprising: an ion mobility detector; a gas/vapor circulating system for the ion mobility detector into which samples of gases and vapors of interest may be drawn for detection by the ion mobility spectrometer; the circulating system comprising an ion mobility cell, means for drying and/or cleaning the circulating gases/vapors in the circulating system, a dopant source, and means for causing circulation of the gases/vapors within the circulating system; in which the dopant source and the means for drying and/or cleaning the circulating gases/vapors are combined, whereby the need for a physically separate dopant source for the system is obviated. The dopant source material may be combined with the material for drying and or cleaning the circulating gases/vapors.
Abstract:
A lamp for providing visible radiation includes tellurium or a tellurium compound in the fill. This substance is present in an amount such that when the fill is excited with sufficient power, substantially all of the radiation resulting from tellurium is emitted at wavelengths exceeding 400 nm. When tellurium is added to a sulfur or selenium based lamp for emitting visible radition, the spectrum is shifted towards the red region.
Abstract:
A lamp for emitting in the visible portion of the spectrum, which utilizes a fill which includes a selenium and/or a sulfur containing substance. The lamp has superior performance characteristics, including long lifetime and excellent color rendition. The bulb may be either electrodeless or electroded, and may contain additives for emphasizing a desired spectral region.
Abstract:
The spectral energy characteristic of a discharge lamp is controlled by changing the density of the fill substance. The spectral characteristic can be shifted while substantially maintaining its shape by changing the density of the fill. A sulfur or selenium containing discharge lamp which is operated at a pressure of at least about 1 atmosphere contains a low ionization potential substance in the fill. Characteristics which are improved are one or more of spatial color uniformity, extinguishing characteristics, and bulb starting reliability. Particular substances which are added to the fill are alkalai metal containing substances, III B metal containing substances, and alkaline earth metal containing substances. When light is reflected back into the bulb, the light which is re-emitted is stronger in the higher wavelengths.