Abstract:
Solid supports for chemiluminescent assays are provided. The solid support includes a plurality of probes covalently or physically attached to the support surface and a chemiluminescent enhancing moiety incorporated onto the surface or into the bulk of the support. The solid support can be a multi-layered support including an upper probe binding layer (e.g., an azlactone polymer layer or porous functional polyamide layer) adjacent to a cationic microgel layer. The azlactone-functional polymer can be a copolymer of dimethylacrylamide and vinylazlactone crosslinked with ethylenediamine. The cationic microgel layer can be a cross-linked quaternary onium salt containing polymer. A method and a kit for conducting chemiluminescent assays using the solid supports is also provided. The kit comprises a dioxetane substrate, a biopolymer probe-enzyme complex, and a solid support. The solid support can be an azlactone functional polymer layer adjacent to a cationic microgel layer; a porous polyamide functional layer adjacent to a cationic microgel layer; or a quaternized azlactone functional polymer layer.
Abstract:
Solid supports for chemiluminescent assays are provided. The solid support includes a plurality of probes covalently or physically attached to the support surface and a chemiluminescent enhancing moiety incorporated onto the surface or into the bulk of the support. The solid support can be a multi-layered support including an upper probe binding layer (e.g., an azlactone polymer layer or porous functional polyamide layer) adjacent to a cationic microgel layer. The azlactone-functional polymer can be a copolymer of dimethylacrylamide and vinylazlactone crosslinked with ethylenediamine. The cationic microgel layer can be a cross-linked quaternary onium salt containing polymer. A method and a kit for conducting chemiluminescent assays using the solid supports is also provided. The kit comprises a dioxetane substrate, a biopolymer probe-enzyme complex, and a solid support. The solid support can be an azlactone functional polymer layer adjacent to a cationic microgel layer; a porous polyamide functional layer adjacent to a cationic microgel layer; or a quaternized azlactone functional polymer layer.
Abstract:
A chemiluminescent assay to determine the presence and/or amount of one or more labeled target molecules in a sample is described in which the surface layer of a solid support is contacted with a composition comprising first and second chemiluminescent substrates capable of being activated by first and second enzymes, respectively. A plurality of probes are disposed on the surface layer in discrete areas. At least some of the probes are bound to a first enzyme conjugate comprising the first enzyme and at least some of the probes are bound to a second enzyme conjugate comprising the second enzyme. The resulting chemiluminescent signals are then detected. The method can be used to compare two biological samples (e.g., mRNA populations from different cells) on the same support surface or to provide a chemiluminescent control signal for normalizing chemiluminescent assay data from a biological sample.
Abstract:
Probes labeled with 1,2-dioxetane precursors can be employed in a variety of assays. The probes may be nucleic acid, peptide nucleic acid, proteins including enzyme, antibody or antigen, steroid, carbohydrate, drug or non-drug hapten. The probe is provided with a 1,2-dioxetane precursor bound thereto, generally either covalently, or a strong ligand bond. The dioxetane precursor moiety is converted to a bound 1,2-dioxetane by exposure to singlet oxygen. These dioxetane (labels) either spontaneously decompose, or are induced to decompose by an appropriate trigger to release light. The trigger may be a change in pH temperature, or an agent which removes a protective group. Assay formats in which these 1,2-dioxetane labeled probes and referents may be used to include hybridization assays, immuno assays, gel-based assays and Capillary Zone Electrophoresis.
Abstract:
Chemiluminescent 1,2-dioxetane compounds capable of producing light energy when decomposed, substantially stable at room temperature, represented by the formulas I or II:
Abstract:
A new class of stable dioxetanes bears a polycyclic stabilizing group and aryloxy moiety, the oxygen atom of which is provided with a protective group which can be removed by an enzymatic or chemical trigger admixed with the dioxetane. The polycyclic stabilizing group is preferably spiroadamantane. The group further bears an alkoxy, aryloxy, aralkyloxy or cycloalkyloxy moiety which is partially or completely substituted with halogens, particularly fluorine and chlorine. Proper selection of electron active groups on the stabilizing moiety, the aryl group and the OR group yields enhanced enzyme kinetics, superior light intensity and excellent detection sensitivity in various assays.
Abstract:
Spiroadamantyl dioxetanes bearing an alkoxy substituent, and an aromatic substituent of phenyl or naphthyl on the dioxetane ring can be activated to chemiluminesce if the aromatic substituent bears a moiety designated OX, wherein the X is cleaved by an enzyme with which the dioxetane is permitted to come in contact with. The T.sub.1/2 kinetics of the chemiluminescent reaction, as well as the signal intensity, or quantum yield of the chemiluminescent reaction, can be altered by selection of an electron-withdrawing or an electron-donating group Z, at positions on the aromatic substituent other than those adjacent the point of attachment to the dioxetane. Signal strength can further be enhanced by recognized chemiluminescent enhancers.
Abstract:
Compounds having the formula: ##STR1## wherein T is a polycycloalkylidene group (e.g., adamant-2-ylidene); R is a C.sub.1-20 alkyl, aralkyl or cycloalkyl group; and Y is a fluorescent chromophore (eg., m-phenylene), produced by reacting a compound having the formula: ##STR2## with an R-ylating agent (e.g., R.sub.2 SO.sub.4) in the presence of an alkali metal alkoxide in a polar aprotic solvent. Also, compounds having the formula: ##STR3## are produced by reacting a compound having the formula: ##STR4## wherein X is an electronegative leaving group (e.g., a halogen anion such as chloride ion) in the presence of a Lewis base (e.g., a trialkyl-amine) dissolved in an aprotic organic solvent (e.g., benzene or toluene). Also, compounds having the formula ##STR5## are produced by reacting a compound of the formula ##STR6## with a tetra-O-acylated-O-hexopyranoside halide, then hydrolyzing off the protective acyl groups. The aforementioned compounds and procedures are useful in the synthesis of enzyme-cleavable 1,2-dioxetane ring systems that can serve as members of a binding pair employed, for example, in chemiluminescent immunoassays, DNA probe assays, and direct assays for an enzyme.
Abstract:
A new class of stable dioxetanes bears a polycyclic stabilizing group and aryloxy moiety, the oxygen atom of which is provided with a protective group which can be removed by an enzymatic or chemical trigger admixed with the dioxetane. The polycyclic stabilizing group is preferably spiroadamantane. The group further bears an alkoxy, aryloxy, aralkyloxy or cycloalkyloxymoiety which is partially or completely substituted with halogens, particularly fluorine and chlorine. Proper selection of electron active groups on the stabilizing moiety, the aryl group and the OR group yields enhanced enzyme kinetics, superior light intensity and excellent detection sensitivity in various assays.
Abstract:
Spiroadamantyl dioxetanes bearing an alkoxy substituent, and a phenyl substituted on the dioxetane ring can be activated to chemiluminesce if the aromatic substituent bears a meta-substituted moiety designated OX, wherein the X is cleaved by an enzyme with which the dioxetane is permitted to come in contact with. The T.sub.1/2 kinetics of the chemiluminescent reaction, as well as the signal intensity and/or quantum yield of the chemiluminescent reaction, can be altered by addition of a chlorine substituent at position 4 on the phenyl ring. Signal strength can further be enhanced by recognized chemiluminescent enhancers.