Semiconductors
    1.
    发明授权

    公开(公告)号:US11384197B2

    公开(公告)日:2022-07-12

    申请号:US16304239

    申请日:2017-05-15

    Applicant: CLAP CO., LTD.

    Abstract: The present invention relates to polymers comprising a repeating unit of the formula—[Ar3]c—[Ar2]b—[Ar1]a—Y(R1)n1 (R2)n2—[Ar1′]a—[Ar2′]b′—[Ar3′]c′— (I), wherein γ is a bivalent heterocyclic group, or ring system, which may optionally be substituted, Ar1, Ar1′Ar2, Ar2′, Ar3 and Ar3′ are independently of each other a C6-C24 arylen group, which can optionally be substituted, or a C2-C30 heteroarylen group, which can optionally be, Formula (1), substituted; at least one of R1 and R2 is a group of formula (II); and their use as organic semiconductor in organic devices, especially in organic photovoltaics and photodiodes, or in a device containing a diode and/or an organic field effect transistor. The polymers according to the invention can have excellent solubility in organic solvents and excellent film-forming properties. In addition, high efficiency of energy conversion, excellent field-effect mobility, good on/off current ratios and/or excellent stability can be observed, when the polymers according to the invention are used in organic field effect transistors, organic photovoltaics and photodiodes.

    Separation of semi-conducting and metallic single-walled carbon nanotubes using a polytungstate

    公开(公告)号:US10676360B2

    公开(公告)日:2020-06-09

    申请号:US15513218

    申请日:2015-09-22

    Applicant: CLAP Co., Ltd.

    Abstract: The present invention relates to a method for separating semi-conducting and metallic single-walled carbon nanotubes from each other and, if present, from other carbonaceous material, or for separating semi-conducting or metallic single-walled carbon nanotubes from other carbonaceous material via density separation using a solution of a polytungstate; to semi-conducting or metallic single-walled carbon nanotubes obtained by this method; and to the use of these semi-conducting or metallic single-walled carbon nanotubes. The invention further relates to the use of a polytungstate, particularly sodium polytungstate, for separating semi-conducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes, or for separating semi-conducting single-walled carbon nanotubes from undesired carbonaceous material, particularly from metallic single-walled carbon nanotubes, or for separating metallic single-walled carbon nanotubes from undesired carbonaceous material, particularly from semi-conducting single-walled carbon nanotubes. The invention also relates to specific polyarylethers containing phosphate groups and their use as surface-active compounds.

    Substituted benzonaphthathiophene compounds for organic electronics

    公开(公告)号:US11355715B2

    公开(公告)日:2022-06-07

    申请号:US16757358

    申请日:2018-10-11

    Applicant: Clap Co., Ltd.

    Abstract: The present invention provides compounds of formulae (1) (2) wherein R1 and R2 are C1-30alkyl, C2-3O-alkenyl, C2-30-alkynyl, C5-7-cycloalkyl, C6-14-aryl or 5 to 14 membered heteroaryl, wherein C1-30-alkyl, C2-3O-alkenyl and C2-3O-alkynyl can be substituted with one or more substituents selected from the group consisting of halogen, phenyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-2O-alkynyl, and wherein C5-7-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one or more substituents selected from the group consisting of halogen, C1-20alkyl, C2-2O-alkenyl, C2-2O-alkynyl, O—C1-20-alkyl, O—C2-2o-alkenyl and O—C2-2o-alkynyl, Ra, Rb, Rc and Rd are independently and at each occurrence selected from the group consisting of C1-30alkyl, C2-30-alkenyl, C2-30-alkynyl, C6-14-aryl and 5 to 14 membered heteroaryl, wherein C1-30-alkyl, C2-3o-alkenyl and C2-3o-alkynyl can be substituted with one or more substituents selected from the group consisting of halogen, phenyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-20-alkynyl, and wherein C5-7-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one or more substituents selected from the group consisting of halogen, C1-20alkyl, C2-2o-alkenyl, C2-20-alkynyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-2o-alkynyl, n and o are independently 0, 1, 2, 3, 4 or 5, and m and p are independently 0, 1, 2 or 3, and to electronic device comprising the compounds of formulae 1 or 2.

    PATTERNING METHOD FOR PREPARING TOP-GATE, BOTTOM-CONTACT ORGANIC FIELD EFFECT TRANSISTORS

    公开(公告)号:US20220293873A1

    公开(公告)日:2022-09-15

    申请号:US17672621

    申请日:2022-02-15

    Applicant: Clap Co., Ltd.

    Abstract: The present invention relates to a process for the preparation of a top-gate, bottom-contact organic field effect transistor on a substrate, which organic field effect transistor comprises source and drain electrodes, a semiconducting layer, a cured first dielectric layer and a gate electrode, and which process comprises the steps of: i) applying a composition comprising an organic semiconducting material to form the semiconducting layer, ii) applying a composition comprising a first dielectric material and a crosslinking agent carrying at least two azide groups to form a first dielectric layer, iii) curing portions of the first dielectric layer by light treatment, iv) removing the uncured portions of the first dielectric layer, and v) removing the portions of the semiconducting layer that are not covered by the cured first dielectric layer, wherein the first dielectric material comprises a star-shaped polymer consisting of at least one polymer block A and at least two polymer blocks B, wherein each polymer block B is attached to the polymer block A, and wherein at least 60 mol % of the repeat units of polymer block B are selected from the group consisting of Formulas (1A), (1B), (1C), (1D), (1E) and (1F), wherein R1, R2, R3, R4, R5, R6, R7 and R8 are independently and at each occurrence H or C1-C10-alkyl.

    PATTERNING METHOD FOR PREPARING TOP-GATE, BOTTOM-CONTACT ORGANIC FIELD EFFECT TRANSISTORS

    公开(公告)号:US20210036248A1

    公开(公告)日:2021-02-04

    申请号:US16978659

    申请日:2019-02-27

    Applicant: Clap Co., Ltd.

    Abstract: The present invention relates to a process for the preparation of a top-gate, bottom-contact organic field effect transistor on a substrate, which organic field effect transistor comprises source and drain electrodes, a semiconducting layer, a cured first dielectric layer and a gate electrode, and which process comprises the steps of: i) applying a composition comprising an organic semiconducting material to form the semiconducting layer, ii) applying a composition comprising a first dielectric material and a crosslinking agent carrying at least two azide groups to form a first dielectric layer, iii) curing portions of the first dielectric layer by light treatment, iv) removing the uncured portions of the first dielectric layer, and v) removing the portions of the semiconducting layer that are not covered by the cured first dielectric layer, wherein the first dielectric material comprises a star-shaped polymer consisting of at least one polymer block A and at least two polymer blocks B, wherein each polymer block B is attached to the polymer block A, and wherein at least 60 mol % of
    the repeat units of polymer block B are selected from the group consisting of Formulas (1A), (1B), (1C), (1D), (1E) and (1F), wherein R1, R2, R3, R4, R5, R6, R7 and R8 are independently and at each occurrence H or C1-C10-alkyl.

    NEW SUBSTITUTED BENZONAPHTHATHIOPHENE COMPOUNDS FOR ORGANIC ELECTRONICS

    公开(公告)号:US20200343458A1

    公开(公告)日:2020-10-29

    申请号:US16757358

    申请日:2018-10-11

    Applicant: Clap Co., Ltd.

    Abstract: The present invention provides compounds of formulae (1) (2) wherein R1 and R2 are C1-30alkyl, C2-3O-alkenyl, C2-30-alkynyl, C5-7-cycloalkyl, C6-14-aryl or 5 to 14 membered heteroaryl, wherein C1-30-alkyl, C2-3O-alkenyl and C2-3O-alkynyl can be substituted with one or more substituents selected from the group consisting of halogen, phenyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-2O-alkynyl, and wherein C5-7-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one or more substituents selected from the group consisting of halogen, C1-20alkyl, C2-2O-alkenyl, C2-2O-alkynyl, O—C1-20-alkyl, O—C2-2o-alkenyl and O—C2-2o-alkynyl, Ra, Rb, Rc and Rd are independently and at each occurrence selected from the group consisting of C1-30alkyl, C2-30-alkenyl, C2-30-alkynyl, C6-14-aryl and 5 to 14 membered heteroaryl, wherein C1-30-alkyl, C2-3o-alkenyl and C2-3o-alkynyl can be substituted with one or more substituents selected from the group consisting of halogen, phenyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-20-alkynyl, and wherein C5-7-cycloalkyl, C6-14-aryl and 5 to 14 membered heteroaryl can be substituted with one or more substituents selected from the group consisting of halogen, C1-20alkyl, C2-2o-alkenyl, C2-20-alkynyl, O—C1-20-alkyl, O—C2-20-alkenyl and O—C2-2o-alkynyl, n and o are independently 0, 1, 2, 3, 4 or 5, and m and p are independently 0, 1, 2 or 3, and to electronic device comprising the compounds of formulae 1 or 2.

Patent Agency Ranking