Abstract:
In one aspect, the present application discloses a light source comprising an LED die having an emitting surface and an optical element having a base, two converging sides, and two diverging sides, wherein the base is optically coupled to the emitting surface. In another aspect, the present application discloses a light source comprising an LED die having an emitting surface and a high index optical element optically coupled to the LED die and shaped to direct light emitted by the LED die to produce a side emitting pattern having two lobes.
Abstract:
Light-emitting articles and methods of manufacturing such articles are disclosed. In one aspect, a light emitting article includes an optical element having an input and an output aperture, each having a size. An LED die having a size is optically coupled to the optical element. The output aperture size of the optical element matches the LED die size. In another aspect, an array of light-emitting articles includes an array of optical elements having a lapped input aperture surface, and an array of LED dies optically coupled to the optical elements at the input aperture. In another aspect, an array of light-emitting articles includes an array of optical elements, and an array of LED dies, each LED die having a size. Each LED die is optically coupled to an optical element at the input aperture. The output aperture size of the optical element is matched to the LED die size.
Abstract:
Methods for making encapsulated light emitting diodes, and light emitting articles prepared thereby are disclosed. The methods include activating a light emitting diode to emit light to at least partially polymerize a photopolymerizable encapsulant.
Abstract:
A light source includes an LED die with an emitting surface and a plurality of optical elements having input surfaces in optical contact with distinct portions of the emitting surface. The optical elements can comprise tapers or concentrators that have reflective side surface(s) and output surfaces larger than the respective input surfaces. The optical elements can couple both light and heat out of the emitting surface of the LED die.
Abstract:
A light source includes an LED die with an emitting surface and a collimating optical element. The optical element includes an input surface in optical contact with the LED emitting surface, and an output surface. The optical element has a first portion that comprises the input surface, made of a first optical material, and a second portion that comprises the output surface, made of a second optical material. The first optical material, which may include sapphire, diamond, or silicon carbide, has a higher refractive index, thermal conductivity, or both relative to the second optical material.
Abstract:
Methods of fabricating optical elements that are encapsulated in monolithic matrices. The present invention is based, at least in one aspect, upon the concept of using multiphoton, multi-step photocuring to fabricate encapsulated optical element(s) within a body of a photopolymerizable composition. Imagewise, multi-photon polymerization techniques are used to form the optical element. The body surrounding the optical element is also photohardened by blanket irradiation and/or thermal curing to help form an encapsulating structure. In addition, the composition also incorporates one or more other, non-diffusing binder components that may be thermosetting or thermoplastic. The end result is an encapsulated structure with good hardness, durability, dimensional stability, resilience, and toughness.
Abstract:
Light sources are disclosed utilizing LED dies that have a light emitting surface. A patterned low refractive index layer that can support total internal reflection within the LED die is provided in optical contact with a first portion of the emitting surface. In optical contact with a second portion of the emitting surface is an input surface of an optical element. The refractive index of the low index layer is below both that of the optical element and the LED die. The optical element can have a variety of shapes and sizes.
Abstract:
An article includes an LED that has an emitting surface. A reemitting semiconductor structure has an emitting surface and converts light emitted by the LED to light of a different wavelength. At least one of the emitting surfaces frustrates total internal reflection.
Abstract:
A multi-photon reactive composition including: (a) at least one reactive species; and (b) multi-photon photoinitiator system; and (c) a plurality of substantially inorganic particles, wherein the particles have an average particle size of less than about 10 microns in diameter.
Abstract:
The present application discloses a light source comprising an LED die having an emitting surface and an optical element including a base, an apex, and a side joining the base and the apex, wherein the base is optically coupled to and mechanically decoupled from the emitting surface.