Abstract:
A ring oscillator includes (2N+1) inverting delay circuit cells, and each delay circuit cell has an input port and an output port, where N is an integer larger than zero. Each of these (2N+1) inverting delay circuit cells receives a control voltage, and all of the (2N+1) inverting delay circuit cells are electrically connected with each other in series. Furthermore, the input port of one of the (2N+1) inverting delay circuit cells is electrically connected with the output port of an adjacent delay circuit cell of the (2N+1) inverting delay circuit cells.
Abstract:
A signal delay circuit including a capacitive load element is described. The capacitive load element has a first input end, a second input end, and a third input end. The first input end receives a first signal, the second input end receives a second signal inverted to the first signal, and the third input end receives a control signal. The capacitance of the capacitive load element changes with the control signal.
Abstract:
A system for clock and data recovery (“CDR”) includes a clock generator, a half-rate phase detector for receiving the input data, an encoder, a phase selector outputting recovered clock, a confidence counter, and a multiplexer outputting recovered data. The clock generator generates an 8-phase clock signal at half a rate of the transmitted serial data. The phase detector samples input data at four times the standard sampling rate, takes the oversampled data and detects phase transitions therein, i.e., phase lead and lag. The encoder encodes the phase transition data. The confidence counter receives the phase transition data and generates a signal representing the accumulated net effect of the phase transitions. The phase selector receives the confidence counter signal and the 8-phase clock from the clock generator, and determines the optimum phase for data sampling.
Abstract:
A simple demodulation circuit having a reduced hardware cost and an increased using flexibility is provided. Such architecture is used in a pulse position modulation for retrieving a data from a received source signal and includes a transformation circuit operating the source signal to produce a quantized data having a plurality of data slots, a slot address detector electrically connected to the transformation circuit for reaching a peak slot address from addresses of the data slots, and a timing recovery decoder electrically connected to the slot address detector for recovering the data through decoding the peak address.
Abstract:
A chip-to-chip multi-signaling communication system with common conductive layer, which comprises a first chip, a second chip, and a common conductive layer, is disclosed. The first chip has at least a first metal pad and a second metal pad. The second chip has at least a first metal pad and a second metal pad. The common conductive layer is to a conductive material and glued directly to the first chip and the second chip. Wherein, the first metal pad of the second chip is aligned with the first metal pad of the first chip for receiving the signal from the first metal pad of the first chip through the common conductive layer. The interference generated by other pads of the first and the second chips is suppressed by the design of the pads and the common conductive layer.
Abstract:
Disclosed is a sample and hold circuit for detecting a parameter of a data signal, which includes: a first switching module, wherein the sample and hold circuit samples the data signal according to the turning on or off of the first switching module; at least one capacitor, coupled to the first switching module; a second switching module, coupled to the capacitor; a controllable reference voltage source, for providing a first reference voltage to charge/discharge the capacitor via the second switching module according to a control signal; a first comparator, coupled to the capacitor, for comparing a voltage drop on the capacitor and the first reference voltage to generate a first comparing result; and a control circuit, coupled to the controllable reference voltage source and the first comparator, for generating the control signal according to the comparing results.
Abstract:
Disclosed is a sample and hold circuit for detecting a parameter of a data signal, which includes: a first switching module, wherein the sample and hold circuit samples the data signal according to the turning on or off of the first switching module; at least one capacitor, coupled to the first switching module; a second switching module, coupled to the capacitor; a controllable reference voltage source, for providing a first reference voltage to charge/discharge the capacitor via the second switching module according to a control signal; a first comparator, coupled to the capacitor, for comparing a voltage drop on the capacitor and the first reference voltage to generate a first comparing result; and a control circuit, coupled to the controllable reference voltage source and the first comparator, for generating the control signal according to the comparing results.
Abstract:
A measuring method and system for liquid crystal display driver chips applies a new method to measure voltages of driver chips, and utilizes probability and statistics for analysis and determination so as to yield a rather accurate effect even under noisy environments. Accordingly, analog-to-digital converters can be replaced for faster sampling. The measuring method and system can be implemented using comparator circuits or pin electronics cards so that the measuring procedure for driver chips is simplified. Measured results are analyzed and verified by application of probability and statistics. As such, testing of liquid crystal display driver chips is more accurate, testing time is reduced, and accuracy level is promoted.
Abstract:
A sampling timing recovering circuit free from being troubled by a frequency error is provided. Such recovering circuit includes a phase locking circuit having a local frequency for processing an incoming signal having a phase, a specific parameter and an input symbol rate and for locking the phase of the incoming signal, and a frequency locking circuit electrically connected to the phase locking circuit for locking the input symbol rate of the incoming signal to enable the phase locking circuit to desiredly process the incoming signal. A method to this effect is also provided and includes the steps of a) processing an incoming signal having a phase, a specific parameter and an input symbol rate to have the phase lockable, b) locking the phase of the incoming signal, and c) locking the input symbol rate of the incoming signal to enable the incoming signal to be predeterminedly processed.
Abstract:
A chip-to-chip multi-signaling communication system with common conductive layer, which comprises a first chip, a second chip, and a common conductive layer, is disclosed. The first chip has at least a first metal pad and a second metal pad. The second chip has at least a first metal pad and a second metal pad. The common conductive layer is to a conductive material and glued directly to the first chip and the second chip. Wherein, the first metal pad of the second chip is aligned with the first metal pad of the first chip for receiving the signal from the first metal pad of the first chip through the common conductive layer. The interference generated by other pads of the first and the second chips is suppressed by the design of the pads and the common conductive layer.