Abstract:
An electronic device may be provided with a proximity sensor. The proximity sensor may include a light source such as a light-emitting diode and a light detector such as a photodiode. The light-emitting diode may be driven with an alternating current drive signal so that alternating current light is produced. The alternating current light may reflect off of an external object and may be received by the photodiode. The photodiode may receive a direct current light signal associated with the presence of ambient light. The efficiency of the photodiode may be affected by the level of ambient light and the efficiency of the light-emitting diode may be affected by the temperature of the light-emitting diode. Ambient light correction circuitry and temperature correction circuitry may be used to ensure that proximity sensor readings are not adversely affected by changes in operating temperature and ambient lighting conditions.
Abstract:
The present invention provides apparatus, kits and methods for assaying analytes using photoelectrochemical molecules as labels. Specifically, the present invention provides a method for assaying an analyte, comprising: a) contacting a sample suspected of containing an analyte with a reactant capable of binding and/or reacting with the analyte under suitable conditions to allow binding of analyte, if present in the sample, to the reactant; and b) assessing binding and/or reacting between the analyte and the reactant to determine presence and/or amount of analyte in the sample, wherein the reactant, analyte, or additional reactant or additional analyte or analyte analog is labeled with a photoelectrochemically active molecule. The assessing step also comprises converting the photoelectrochemically active molecule with light to an excited state in the presence of an electrode, and assessing an electric current generated by an electron transfer between the excited photoelectrochemically active molecule and the electrode.
Abstract:
A configurable photo detector circuit comprises a photo detector array including a plurality of photo detectors coupled to a plurality of amplifiers. A method for programming a detection pattern of the configurable photo detector circuit comprises selecting a first detection pattern for the photo detector array, generating first signals to create the first selected detection pattern, and applying the first generated signals to the photo detector circuit to implement the first selected detection pattern.
Abstract:
A method and system for image and video encoding and decoding is disclosed. A plurality of macro-blocks of pixels are defined in the image to be encoded, for subsequent block-by-block encoding and decoding. A node-cell structure of pixels is individually defined for each macro-block. The node pixels are encoded first. Then, the cell pixels are encoded using the decoded node pixels as a reference. This allows increasing macro-block size without a significant degradation of pixel encoding quality.
Abstract:
In accordance with an embodiment, a circuit includes a photodetector (PD) array including a plurality of electrically isolated PD sections. Additionally, the circuit includes a switching matrix that includes a plurality of inputs and a plurality of outputs, and that can be selectively configured in a plurality of different switch configurations. Each of the electrically isolated PD sections is adapted to detect light (if any) and provide an electrical output signal, indicative of the light detected by the PD section (if any), to a different one of the inputs of the switching matrix. The switching matrix is adapted to combine the electrical output signals provided by the electrically isolated PD sections in a plurality of different manners, in dependence on which of the plurality of different switch configurations is selected.
Abstract:
Embodiments of the present invention generally relate to circuits, systems and methods that can be used to detect light beam misalignment, so that compensation for such misalignment can be performed. In accordance with an embodiment, a circuit includes a photo-detector (PD) having a plurality of electrically isolated PD segments. Additionally, the circuit has circuitry, including switches, configured to control how currents indicative of light detected by the plurality of electrically isolated PD segments are arithmetically combined. When the switches are in a first configuration, a signal produced by the circuitry is indicative of vertical light beam alignment. When the switches are in a second configuration, the signal produced by the circuitry is indicative of horizontal light beam alignment. The signals indicative of vertical light beam alignment and horizontal light beam alignment can be used detect light beam misalignment, so that compensation for such misalignment can be performed.
Abstract:
A configurable photo detector circuit includes a photo detector array having a plurality of photo detectors. A switching matrix includes a first plurality of inputs coupled to outputs of the plurality of photo detector, a second plurality of inputs, and a plurality of matrix outputs. A controller is coupled to the second plurality of inputs of the switching matrix for configuring the switching matrix. The controller is operable to receive programmed commands for configuring the switching matrix. An output block having a plurality of inputs is coupled to receive the plurality of matrix outputs and a plurality of outputs, wherein electrical signals from the plurality of photo detectors are directed to respective ones of the plurality of outputs based on the switching matrix.
Abstract:
Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
Abstract:
A method of forming efficient photodiodes includes the steps of providing a substrate having a p-surface region on at least a portion thereof, implanting a shallow n-type surface layer into the surface region, and forming a multilayer first anti-reflective (AR) coating on the n-type surface layer. The surface layer is preferably an As or Sb surface layer. The forming the AR step include the steps of depositing or forming a thin oxide layer having a thickness of between 1.5 nm and 8 nm on the shallow surface layer, and depositing a second dielectric different from the thin oxide layer on the thin oxide layer, such as a silicon nitride layer.
Abstract:
A phase adjuster (10) includes a delay-locked loop (14) and an interpolator (34). The delay-locked loop (14) includes a sufficient number of delay stages (24) to maintain a Π/2 radians phase shift across the one delay stage (24′) of a voltage-controlled delay line (20). The output signals (28 and 30) to this one stage (24′) are filtered, output from the delay-locked loop (14), and input to the interpolator (34). Within the interpolator (34), these output signals (28 and 30) are weighted and combined. The ratio of the weighting applied to the output signals determines the resulting adjusted phase of an output clock signal (36). The weighting can be a time-varying signal or otherwise programmed as needed to achieve a desired phase shift that is independent of clock speed and process variation.