Abstract:
An indoor location awareness method for locating a device using device-observable signals of known proximity sensors and device-unobservable signals of known proximity sensors. The exclusion of the possibility that the device is within an unobservable proximity sensor's range increases the knowledge of the device's true location. In addition to defining the location of the device, the device can predict the arrival and departure of unobservable proximity sensors as it moves throughout the environment.
Abstract:
Embodiments disclosed herein provide approaches for attaching scan control and other electronic chips to textiles, e.g., on a loom as part of a real-time manufacturing process.
Abstract:
Mobile device operation using grip intensity. An embodiment of a mobile device includes a touch sensor to detect contact or proximity by a user of the mobile device; a memory to store indicators of grip intensity in relation to the touch sensor; and a processor to evaluate contact to the touch sensor. The processor is to compare a contact with the touch sensor to the indicators of grip shape and firmness to determine grip intensity, and the mobile device is to receive an input for a function of the mobile device based at least in part on determined grip intensity for the mobile device.
Abstract:
Mobile device rejection of unintentional sensor contact. An embodiment of a mobile device includes a first touch sensor to detect contact by a user of the mobile device for input of gestures by the user, a memory to store indicators of unintentional contact to the first touch sensor, and a processor to evaluate contact to the first touch sensor. The processor compares a contact with the first touch sensor to the indicators of unintentional contact to determine if the contact is unintentional, and the mobile device rejects the contact as an input to the mobile device if the contact is determined to be unintentional and accepts the contact as an input to the mobile device if the contact is determined to be intentional.
Abstract:
A mechanism is described for employing and facilitating a thumb sensor at a computing device. A method of embodiments of the invention includes extending a touch panel of a computing device into a flap of the touch panel to be used as a side sensor of the computing device, and sensing a use of the side sensor, the use including touching of the side sensor by a user, where sensing may include detecting a change at one or more intersecting points of a plurality of intersecting points of conductive lines. The method may further include facilitating an action in response to the use of the side sensor.
Abstract:
Certain embodiments of the invention may include systems, methods, and apparatus for obtaining information from objects attached to a vehicle. According to an example embodiment of the invention, a method is provided for receiving one or more camera images from a front-facing camera attached to a vehicle; locating, from the one or more camera images, one or more region of interest (ROI) images; processing the one or more ROI images; outputting the one or more processed ROI images to a display within the vehicle; receiving radio frequency identification (RFID) information from a RFID reader attached to a front portion of the vehicle; and outputting one or more commands based at least in part on one or more of the RFID information or the processing of the one or more ROI images.
Abstract:
Some embodiments disclosed herein provide novel approaches for rapidly sensing sense line cross-point interaction in a textile such as a carpet or rug.
Abstract:
Embodiments disclosed herein provide approaches for attaching scan control and other electronic chips to textiles, e.g., on a loom as part of a real-time manufacturing process.
Abstract:
Mobile device operation using grip intensity. An embodiment of a mobile device includes a touch sensor to detect contact or proximity by a user of the mobile device; a memory to store indicators of grip intensity in relation to the touch sensor; and a processor to evaluate contact to the touch sensor. The processor is to compare a contact with the touch sensor to the indicators of grip shape and firmness to determine grip intensity, and the mobile device is to receive an input for a function of the mobile device based at least in part on determined grip intensity for the mobile device.
Abstract:
A mechanism is described for employing and facilitating a thumb sensor at a computing device. A method of embodiments of the invention includes extending a touch panel of a computing device into a flap of the touch panel to be used as a side sensor of the computing device, and sensing a use of the side sensor, the use including touching of the side sensor by a user, where sensing may include detecting a change at one or more intersecting points of a plurality of intersecting points of conductive lines. The method may further include facilitating an action in response to the use of the side sensor.