Abstract:
A nonwoven web made from a polymeric fiber blend comprising at least one elastomeric polyolefin and at least one nonelastomeric polyolefin useful as the elastic base sheet for a nonwoven laminate is disclosed. Preferably, the polymeric blend will comprise a nonelastomeric resin in the range of from about 10 to about 90 percent by weight, and an elastomeric resin of from about 90 to about 10 percent by weight. The elastomeric polyolefin will have a density of less than about 0.885 g/cm3 and the nonelastomeric polyolefin will have a density of at least about 0.890 g/cm3. In one particular embodiment, the polymeric blend may comprise about 50 percent to about 90 percent by weight of a narrow molecular weight distribution polyethylene and about 50 percent to about 10 percent by weight of a nonelastomeric polyolefin such as a linear low density polyethylene.
Abstract translation:公开了一种由包含至少一种弹性体聚烯烃和至少一种非弹性聚烯烃制成的非织造纤维网,该非弹性聚烯烃可用作非织造层压材料的弹性基片。 优选地,聚合物共混物将包含约10-约90重量%范围内的非弹性体树脂和约90至约10重量%的弹性体树脂。 弹性体聚烯烃的密度小于约0.885g / cm 3,非弹性聚烯烃的密度至少约为0.890g / cm3。 在一个具体实施方案中,聚合共混物可以包含约50重量%至约90重量%的窄分子量分布聚乙烯和约50重量%至约10重量%的非弹性聚烯烃,例如线性低密度聚乙烯。
Abstract:
A proxy mobile station for retransmitting reverse channel signals from a mobile station to a base station of a wireless network. The proxy mobile station comprises: 1) a controller for receiving reverse channel data to be transmitted to the base station and transmitting the reverse channel data using an assigned mobile station identifier associated with the mobile station; and 2) a radio frequency transceiver for up-converting the encoded reverse channel data for transmission to the base station. The assigned mobile station is modifiable and may be modified by an external control device.
Abstract:
A new process of interpolymerizing ethylene interpolymer products having improved properties, such as increased onset of crystallization temperature, is disclosed. Preferably, the process comprises interpolymerizing a first homogeneous ethylene/alpha-olefin interpolymer and at least one second homogeneous ethylene/alpha-olefin interpolymer using at least two constrained geometry catalysts having different reactivities such that the first ethylene/alpha-olefin interpolymer has a narrow molecular weight distribution (NMWD) with a very high comonomer content and relatively high molecular weight and the second ethylene/alpha-olefin interpolymer has a NMWD with a low comonomer content and a molecular weight lower than that of the first interpolymer. The resultant first homogeneous interpolymer is combined with the resultant second homogeneous interpolymer in appropriate weight ratios resulting in the desired finished polymer structure. The first interpolymer and the second interpolymer can be polymerized in a single reactor or they can be polymerized in separate reactors operated in parallel or series.
Abstract:
A new process of interpolymerizing ethylene interpolymer products having improved properties, such as increased onset of crystallization temperature, is disclosed. Preferably, the process comprises interpolymerizing a first homogeneous ethylene/alpha-olefin interpolymer and at least one second homogeneous ethylene/alpha-olefin interpolymer using at least two constrained geometry catalysts having different reactivities such that the first ethylene/alpha-olefin interpolymer has a narrow molecular weight distribution (NMWD) with a very high comonomer content and relatively high molecular weight and the second ethylene/alpha-olefin interpolymer has a NMWD with a low comonomer content and a molecular weight lower than that of the first interpolymer. The resultant first homogeneous interpolymer is combined with the resultant second homogeneous interpolymer in appropriate weight ratios resulting in the desired finished polymer structure. The first interpolymer and the second interpolymer can be polymerized in a single reactor or they can be polymerized in separate reactors operated in parallel or series.
Abstract:
Ethylene, an &agr;-olefin and, optionally, a diene monomer are polymerized in a process comprising the step of contacting (1) ethylene, (2) at least one C3-C20 aliphatic &agr;-olefin, (3) optionally, at least one C4-C20 diene, (4) a catalyst comprising (a) a metallocene complex, and (b) an activator, and (5) a solvent. The process is conducted in either a single reactor or in multiple reactors, the latter configured either in series or parallel. Solvent is removed from the polymer stream in an anhydrous, first stage solvent recovery operation such that the solids concentration of the product stream is increased by at least 100 percent. Additional solvent is removed in an anhydrous, second stage solvent recovery operation from the product of the first stage solvent recovery operation such that the solids concentration of the product stream is in excess of 65 weight percent.
Abstract:
The subject invention is directed to an olefin polymer produced by polymerizing at least one &agr;-olefin in the presence of a Group 4 metal complex comprising an indenyl group substituted in the 2 or 3 position with at least one group selected from hydrocarbyl, perfluoro-substituted hydrocarbyl, silyl, germyl and mixtures thereof, said indenyl group further being covalently bonded to the metal by means of a divalent ligand group, wherein the divalent ligand comprises nitrogen or phosphorus having an aliphatic or alicyclic hydrocarby group covalently bonded thereto via a primary or secondary carbon. Preferred olefin polymers of the invention will be characterized as having a high molecular weight, narrow molecular weight distribution, high vinyl content, and a bimodal DSC melting curve or a deconvoluted ATREF or GPC curve which shows at least two distinct narrow peaks. The olefin polymer will have utility in a variety of applications, including but not limited to films, fibers, foams, molded parts, and as components of formulations such as adhesives, sealants, coatings, caulks, and asphalt.
Abstract:
The present invention is at least a two-component thermoplastic elastomeric composition comprising at least one block copolymer wherein the composition has essentially the same comparative elasticity, high temperature serviceability and hardness as the unmodified, undiluted (neat) block copolymer portion of the composition. The composition also shows enhanced thermal stability and processibility and is well suited for fabricating elastic moldings, films and fibers as well as for formulating with asphalts, adhesives and sealants. The novel thermoplastic elastomeric composition comprises (a) from about 50 to about 99 percent by weight of at least one block copolymer and (b) about 1 to about 50 percent by weight of at least one ethylene interpolymer having a density from about 0.855 g/cc to about 0.905 g/cc, wherein the ethylene interpolymer in the amount employed is a substantially inert extender of the block copolymer and the composition is further characterized as having: i. storage moduli throughout the range of −26° C. to 24° C. of less than about 3.5×109 dynes/cm2, ii. a ratio of storage modulus at −26° C. to storage modulus at 24° C. of less than about 4, and iii. storage moduli at −26° C. and 24° C. about 0.2 to about 3 times higher than the storage moduli at −26° C. and 24° C., respectively, of the neat block copolymer portion of the composition.
Abstract:
Olefinic interpolymer compositions comprising the olefinic interpolymer, residuals from a transition metal catalyst and boron containing activator package, and a charge dissipation modifier and methods for making them. The compositions have dissipation factors that are at least 50% less than the corresponding olefinic interpolymer compositions which have not been treated with charge dissipation modifiers. The compositions are useful in wire and cable applications.
Abstract:
Olefinic interpolymer compositions comprising the olefinic interpolymer, residuals from a transition metal catalyst and boron containing activator package, and a charge dissipation modifier and methods for making them. The compositions have dissipation factors that are at least 50% less than the corresponding olefinic interpolymer compositions which have not been treated with charge dissipation modifiers. The compositions are useful in wire and cable applications.
Abstract:
Disclosed are adhesives and processes for preparing the same, comprising at least one first homogeneous ethylene/α-olefin interpolymer, and optionally at least one tackifier, and optionally at least one plasticizer. The claimed adhesives are useful as adhesives such as are employed in various applications, such as in masking tape, clear office tape, labels, decals, bandages, decorative and protective sheets (such as shelf and drawer liners), floor tiles, sanitary napkin/incontinence device placement strips, sun control films, the joining of gaskets to automobile windows, packaging, bookbinding, construction of nonwoven articles, and insulation bonding.