摘要:
The disclosure is directed to a heart occlusion device and a method for occluding an aperture defect in a heart. The heart occlusion device includes two separate wires 12, 14. Each wire forms geometric shapes that together form a distal plate and a proximal plate. The first plate is disposed in a first plane. The second plate is disposed in a second plane that is parallel to and remote from the first plane. The distal plate and the proximal plate are separated by a self-centering waist. The proximal plate is attached to a hub. A similar hub is optional on the distal plate. The plates further include coverings which form a sealant to occlude an aperture in a tissue. The wires forming the plates have a shape-memory capability such that they can be collapsed and distorted in a catheter during delivery but resume and maintain their intended shape after delivery.
摘要:
An improved stent-graft device is provided that delivers a smooth flow surface over a range of operative expanded diameters by applying a unique cover material to the stent through a technique that allows the cover to become wrinkle-free prior to reaching fully deployed diameter. The unique cover material then allows the device to continue to expand to a fully deployed diameter while maintaining a smooth and coherent flow surface throughout this additional expansion. Employed with a self-expanding device, when the device is unconstrained from a compacted diameter it will self-expand up to a fully deployed diameter with the graft being substantially wrinkle-free over diameters ranging from about 30-50% to 100% of the fully deployed diameter.
摘要:
A self-expanding stent-graft provided in a diametrically compacted state for implantation and retained preferably by a constraining sheath, useful for the temporary or permanent repair of injured, partially or entirely transected body conduits including blood vessels. It may be used under direct visualization to quickly stop or substantially reduce loss of blood from such damaged vessels and to quickly re-establish perfusion distal to the injury site. The device would typically be implanted under emergency room conditions but also be used in field situations by trained medical technicians. After an end of the device is inserted into a blood vessel through the injury access, deployment preferably initiates from the device end in a direction moving toward the middle of the length of the device by directionally releasing the constraining sheath. In a preferred embodiment, the two opposing ends of the device are individually deployable from the compacted, small diameter intended for insertion into a vessel, to the larger diameter at which they fit interferably into a portion of the vessel.
摘要:
The present invention is directed to bioabsorbable self-expanding medical devices for use inside or outside body conduits that self-expand at, or below, normal human body temperature without requisite for a polymeric thermal transition
摘要:
A stent-graft which is particularly useful for applications in biliary ducts. An expandable stent is provided with a covering of a material which is substantially impervious to body fluids and tissue ingrowth and has an increased resistance to bacterial attachment due to its lack of porosity and reduced surface texture. A preferred covering is porous PTFE film rendered substantially non-porous by a coating of a polymeric material such as FEP. The resulting stent has a thin wall for minimum pre-deployment diameter and for minimum interference with fluid flow through the device after implantation. It has good flexibility, allowing its use in curved ducts.
摘要:
Puncturing tools that cause an aperture to be pierced through the wall of a guidewire lumen of a catheter shaft at a location at which it is desired to have a guidewire exit the guidewire lumen.
摘要:
The present invention is directed to implantable bioabsorbable non-woven self-cohered web materials having a very high degree of porosity. The web materials are very supple and soft, while exhibiting proportionally increased mechanical strength in one or more directions. The web materials often possess a high degree of loft. The web materials can be formed into a variety of shapes and forms suitable for use as implantable medical devices or components thereof. In some embodiments, the web materials exhibit significant thrombogenic properties.
摘要:
A seamless, self-expanding implantable device having a low profile is disclosed along with methods of making and using the same. The implantable device includes a frame cut out of a single piece of material that is formed into a three-dimensional shape. The implantable device may comprise an embolic filter, stent, or other implantable structure. The present invention also allows complicated frame structures to be easily formed from planar sheets of starting material, such as through laser cutting, stamping, photo-etching, or other cutting techniques.
摘要:
A seamless, self-expanding implantable device having a low profile is disclosed along with methods of making and using the same. The implantable device includes a frame cut out of a single piece of material that is formed into a three-dimensional shape. The implantable device may comprise an embolic filter, stent, or other implantable structure. The present invention also allows complicated frame structures to be easily formed from planar sheets of starting material, such as through laser cutting, stamping, photo-etching, or other cutting techniques.
摘要:
Novel catheter constructions comprising thin covering or wrapping materials such as polymer films. A catheter provided with a guidewire catheter lumen having a thin covering that is easily punctured by a guidewire at virtually any desired point along the catheter length. The thin covering may be integral with the catheter shaft, or may be a separate component that covers only the portion of the catheter shaft immediately adjacent the outer portion of the guidewire lumen, or may be a thin tubular construct that surrounds the entire catheter shaft. Moreover, polymer film can be used in combination with one or more elements to produce novel catheter constructions.