摘要:
A broad band mirror system and method, wherein the system includes a mechanical substrate layer, a reflective metal layer on the mechanical substrate level, and a diamond layer, and the method includes the steps of selecting a sacrificial substrate layer, depositing a diamond layer on the substrate layer, smoothing a first surface of the diamond layer, depositing a reflective metal layer on the diamond layer, bonding a mechanical substrate to the diamond layer, removing the sacrificial substrate level, and smoothing a second diamond surface.
摘要:
A method for fabricating an RF enhancement mode FET (30) having improved gate properties is provided. The method comprises the steps of providing (131) a substrate (31) having a stack of semiconductor layers (32-35) formed thereon, the stack including a cap layer (35) and a central layer (33) defining a device channel, forming (103) a photoresist pattern (58) over the cap layer, thereby defining a masked region and an unmasked region, and, in any order, (a) creating (105) an implant region (36, 37) in the unmasked region, and (b) removing (107) the cap layer from the unmasked region. By forming the implant region and cap region with no overlap, a device with low current leakage may be achieved.
摘要:
Disclosed herein is method for fabricating a graphene layer on a non-graphene carbon layer including steps of cleaning and seeding a substrate, depositing a crystalline diamond on the substrate, sputtering an aluminum layer on the crystalline diamond, where the aluminum layer is greater than 5 nanometers and less than 50 nanometers; and treating a surface of the aluminum layer with an ion beam resulting in a graphene layer on the crystalline diamond.
摘要:
A method in a wireless communication transmitter including a baseband processor (310) that dynamically configures the transmitter for a particular signal configuration, and a headroom controller (350) for adjusting transmitter headroom based on the particular signal configuration. In one embodiment, the PA headroom is controlled based on a power metric, for example, a 3rd order polynomial or peak to average ratio (PAR) metric, that is a function of the signal configuration. In another embodiment the PA headroom is adjusted using information in a look up table.
摘要:
A power amplification circuit (10) includes a scalable power amplifier (20) to produce an RF output signal (50) at an output of the power amplification circuit (10), and a variable impedance circuit (30) coupled to the output of the power amplification circuit (10). The scalable power amplifier (20) includes a plurality of selectively activated amplifier elements (22), (24), (26) to produce the RF output signal (50) in accordance with a desired RF output signal power level. The power amplification circuit (10) selectively activates individual amplifier elements by, for example reducing power or increasing power to at least one amplifier element. The variable impedance circuit (30) varies an impedance of the variable impedance circuit (30) to dynamically load the output of the scalable power amplifier(20).
摘要:
An enhancement mode semiconductor device has a barrier layer disposed between the gate electrode of the device and the semiconductor substrate underlying the gate electrode. The barrier layer increases the Schottky barrier height of the gate electrode-barrier layer-substrate interface so that the portion of the substrate underlying the gate electrode operates in an enhancement mode. The barrier layer is particularly useful ill compound semiconductor field effect transistors, and preferred materials for the barrier layer include aluminum gallium arsenide and indium gallium arsenide.
摘要:
A semiconductor device (20) is formed on a compound semiconductor substrate (21). The semiconductor device (20) is oriented on the surface (40) of the compound semiconductor substrate (21) such that the physical forces that result from the thermal heating or cooling of the compound semiconductor substrate (21) are essentially equal. This orientation reduces the variability of the drain to source current of the semiconductor device (20) as the semiconductor device (20) is operated at different temperatures.
摘要:
A method for forming a metal pattern on a substrate (11) includes forming a dielectric stack (14) on a major surface (12) of the substrate (11) and forming a mask (22) on the dielectric stack (14). The dielectric stack (14) includes an aluminum nitride layer (16) serving as an etch stop layer between two dielectric layers (15, 17). An opening is formed in the dielectric stack (14) via successive etching. The etching of the dielectric layer (15) between the aluminum nitride layer (16) and the substrate (11) undercuts the aluminum nitride layer (16). A metal layer (30) is deposited on the major surface through the opening via sputtering. The metal layer (30) on the major surface is distinctively separated from a metal layer (34) on the edge of the opening. The mask (22) is dissolved in a solvent, thereby lifting-off a metal layer (34) deposited on the mask (22).
摘要:
Disclosed herein is a system and method for transistor pathogen virus detector in which one embodiment may include a substrate layer, a silicon dioxide layer on the substrate layer, a nanocrystalline diamond layer on the silicon dioxide layer, a graphene oxide layer on the nanocrystalline diamond layer, fluorinated graphene oxide portions; and a linker layer, the linker layer including a plurality of pathogen receptors.
摘要:
Disclosed herein is a broad band mirror system and method, wherein the system includes a mechanical substrate layer, a reflective metal layer on the mechanical substrate level, and a diamond layer, and the method includes the steps of selecting a sacrificial substrate layer, depositing a diamond layer on the substrate layer, smoothing a first surface of the diamond layer, depositing a reflective metal layer on the diamond layer, bonding a mechanical substrate to the diamond layer, removing the sacrificial substrate level, and smoothing a second diamond surface.