Abstract:
A catalyst for the carbonylation of dimethyl ether to methyl acetate. The catalyst comprises a zeolite, such as a mordenite zeolite, at least one Group IB metal, such as copper, and/or at least one Group VIII metal, such as iron, and at least one Group IIB metal, such as zinc. Such a catalyst with combined metals provides enhanced catalytic activity, improved stability, and improved selectivity to methyl acetate, and does not require a halogen promoter, as compared to a metal-free or copper only zeolite.
Abstract:
A catalyst for the carbonylation of dimethyl ether to methyl acetate. The catalyst comprises a zeolite, such as a mordenite zeolite, at least one Group IB metal, such as copper, and/or at least one Group VIII metal, such as iron, and at least one Group IIB metal, such as zinc. Such a catalyst with combined metals provides enhanced catalytic activity, improved stability, and improved selectivity to methyl acetate, and does not require a halogen promoter, as compared to a metal-free or copper only zeolite.
Abstract:
A method for co-producing a sulfur-containing raw synthetic gas and an essentially desulfurized solid residue from a sulfur-containing heavy petroleum residue feedstock, comprising feeding a bubbling fluidized-bed gasification reactor with the feedstock, and converting the feedstock to a raw synthetic gas by a partial oxidation reaction in the presence of water at a temperature at or below about 1000° C. and a pressure at or below about 10 atm, thereby also producing an essentially desulfurized solid residue, while the sulfur components are essentially comprised in the raw synthetic gas; and separately recovering the essentially desulfurized solid residue and the sulfur-containing raw synthetic gas.
Abstract:
A process for converting methanol to ethanol which comprises reacting methanol and carbon monoxide in the presence of a catalyst to produce a product comprising at least 25 mole % methyl acetate and, in some instances, acetic acid. The acetic acid then is reacted with at least one alcohol to produce at least one acetate selected from methyl acetate, ethyl acetate, and butyl acetate. The at least one acetate (if produced) and the methyl acetate produced as a result of reacting methanol and carbon monoxide then are hydrogenated to produce ethanol. Syngas may be produced from biomass to produce all or a portion of the methanol, hydrogen, and carbon monoxide requirements for the process.
Abstract:
A process for converting methanol to ethanol which comprises reacting methanol and carbon monoxide in the presence of a catalyst to produce a product comprising at least 25 mole % methyl acetate and, in some instances, acetic acid. The acetic acid then is reacted with at least one alcohol to produce at least one acetate selected from methyl acetate, ethyl acetate, and butyl acetate. The at least one acetate (if produced) and the methyl acetate produced as a result of reacting methanol and carbon monoxide then are hydrogenated to produce ethanol. Syngas may be produced from biomass to produce all or a portion of the methanol, hydrogen, and carbon monoxide requirements for the process.
Abstract:
A process for treating a heavy oil which comprises subjecting a heavy oil to cavitation to reduce the viscosity of the heavy oil. The treated heavy oil, which has a reduced viscosity and specific gravity, thus is more pumpable and transportable, which facilitates further processing. The treated heavy oil also can be fractionated with less severity than untreated heavy oil.
Abstract:
A process for converting methanol to ethanol which comprises reacting methanol and carbon monoxide in the presence of a catalyst to produce a product comprising at least 25 mole % methyl acetate and, in some instances, acetic acid. The acetic acid then is reacted with at least one alcohol to produce at least one acetate selected from methyl acetate, ethyl acetate, and butyl acetate. The at least one acetate (if produced) and the methyl acetate produced as a result of reacting methanol and carbon monoxide then are hydrogenated to produce ethanol. Syngas may be produced from biomass to produce all or a portion of the methanol, hydrogen, and carbon monoxide requirements for the process.
Abstract:
A process for treating a heavy oil which comprises subjecting a heavy oil to cavitation to reduce the viscosity of the heavy oil. The treated heavy oil, which has a reduced viscosity and specific gravity, thus is more pumpable and transportable, which facilitates further processing. The treated heavy oil also can be fractionated with less severity than untreated heavy oil.
Abstract:
The present invention relates to a process for continuous conversion of starch or starch containing materials into hydrolysates such as dextrins, higher sugars, maltose or dextrose. It provides for an extremely fast heating of an acidified or non acidified slurry by spraying it very finely into a chamber containing steam under pressure. The fast heating rate combined with the high operating temperature allow processing times of less than 20 seconds, usually between 1 and 4 seconds during which the starch is converted into the desired hydrolysate without passing through the classical "gelatinized" or "pasted" state. The desired product can be custom tailored from dextrins to glucose, in high yield and low level of degradation products. Moreover, the dextrins so produced have a very uniform molecular weight and the process can handle purified as well as impure starch such as ground corn, cassava and deteriorated harvests.
Abstract:
A catalyst for the carbonylation of dimethyl ether to methyl acetate. The catalyst comprises a zeolite, such as a mordenite zeolite, at least one Group IB metal, such as copper, and/or at least one Group VIII metal, such as iron, and at least one Group IIB metal, such as zinc. Such a catalyst with combined metals provides enhanced catalytic activity, improved stability, and improved selectivity to methyl acetate, and does not require a halogen promoter, as compared to a metal-free or copper only zeolite.