Abstract:
A composition is disclosed comprising a long-chain quaternary ammonium compound and a wood preservative active agent or a mixture thereof. The long-chain quaternary ammonium compound includes at least one alkyl moiety having from 16 to 50 carbon atoms, unsubstituted or substituted with one or more N, O, S, or halogen atoms. A method of treating wood is disclosed, comprising impregnating wood with the above composition in an amount effective to reduce the preservative active ingredient loss in the treated wood or to increase the resistance of the wood to decay. Treated wood and wood products are disclosed comprising wood impregnated with the above composition, including a treatment level of the long-chain quaternary ammonium compound effective to reduce the preservative active ingredient loss in the treated wood or to increase the resistance of the wood to decay.
Abstract:
This application relates to making magnesium oxychloride boards. A magnesium oxychloride slurry is mixed by directing magnesium chloride, magnesium oxide, at least one phosphate, at least one inorganic salt, and water into a mixer and mixing these ingredients together to form a slurry. At least one filler is then mixed with the slurry. The slurry is directed to a mold. The mold is formed with the slurry to form a magnesium oxychloride board. The magnesium oxychloride board is then cured.
Abstract:
Water-based wax emulsions, optionally for use in conjunction with alkaline copper and/or quaternary ammonium based preservatives systems, are described. These emulsions are comprised of natural or synthetic wax, nonionic surfactants having HL B values greater than 11, anionic surfactants, and water. Certain emulsion compositions as described in this specification posses the unique property of maintaining emulsion stability in wood preservatives during extended use in typical wood treatment processes. Water-repellant wood treated with the wax emulsions are described. A method of treating wood, comprising providing wood and treating the wood with the wax emulsion under conditions effective to increase its water repellency is also disclosed.
Abstract:
There are provided compositions for the preservation of wood and related cellulosic and lignocellulosic materials. The wood preservative compositions of the present invention contain an organic preservative agent and an organic acid, and can be solubilized in an organic phase essentially free of volatile organic compounds (VOC). The organic acids may serve various purposes in the compositions of the present invention: (1) increased preservative solubility in the organic phase, (2) improved distribution gradient of the active preservative in treated wood, or (3) reduction of preservative leaching.
Abstract:
A process for treating a wood substrate with a water-based formulation containing a wax in order to confer water repellency to the substrate comprising the steps of: (a) placing the substrate in a treatment vessel and reducing the pressure in the vessel to remove air in the pores of the substrate; (b) contacting the substrate in the vessel, while reduced pressure is present in the vessel, with the formulation to allow the formulation to flow into said pores, said contacting being carried out at a temperature at or above that required to cause the wax to change into a molten state; (c) applying a positive pressure to the vessel to force the formulation into said pores; and (d) releasing the pressure in the vessel and removing the resultant wood substrate from the vessel.
Abstract:
There are provided compositions for the preservation of wood and related cellulosic and lignocellulosic materials. The wood preservative compositions of the present invention contain an organic preservative agent and an organic acid, and can be solubilized in an organic phase essentially free of volatile organic compounds (VOC). The organic acids may serve various purposes in the compositions of the present invention: (1) increased preservative solubility in the organic phase, (2) improved distribution gradient of the active preservative in treated wood, or (3) reduction of preservative leaching.
Abstract:
A composition is disclosed comprising a long-chain quaternary ammonium compound and a wood preservative active agent or a mixture thereof. The long-chain quaternary ammonium compound includes at least one alkyl moiety having from 16 to 50 carbon atoms, unsubstituted or substituted with one or more N, O, S, or halogen atoms. A method of treating wood is disclosed, comprising impregnating wood with the above composition in an amount effective to reduce the preservative active ingredient loss in the treated wood or to increase the resistance of the wood to decay. Treated wood and wood products are disclosed comprising wood impregnated with the above composition, including a treatment level of the long-chain quaternary ammonium compound effective to reduce the preservative active ingredient loss in the treated wood or to increase the resistance of the wood to decay.
Abstract:
A process is provided herein for extracting organic toxic contaminants including pentachlorophenol, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans, from wood, e.g., utility poles, fence posts, or railway ties. The process comprises extracting the wood with a supercritical fluid in conjunction with an entrainer having wood swelling properties and an agent to break the hydrogen bond between the organic toxic contaminants and the wood, at conventional supercritical fluid extraction temperatures and pressures. The process is further improved by exposing, either in a slurry of the wood phase, or in a liquid phase resulting from such extraction, the contaminants to UV, e.g., sunlight, in the presence of a photosensitizer. The present invention also provides for the photodegradation of a solution of organic toxic chemicals including pentachlorophenol, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans, by exposing such solution to UV, e.g., sunlight, in the presence of a photosensitizer.
Abstract:
A light weight geopolymer concrete, having a specific gravity less than 2.0, more typically between 1 and 1.3, is provided that has compressive strength comparable to or greater than ordinary Portland concrete. The light weight geopolymer concrete has low shrinkage, expansion, and cracking, and substantially no loss of compressive strength when exposed to high temperatures of 800° C. or greater, as would occur in a fire. To be useful as a load bearing member for general applications, such as residential housing, the compressive strength of the light-weight geopolymer concrete should be at least 10 MPa, preferably greater than 12 MPa, for example greater than 15 MPa. For more demanding uses, the compressive strength should be near or at the compressive strength of concrete, that is, greater than 20 MPa, preferably greater than 30 MPa, and optimally greater than 35 MPa. To be useful during and after a fire, the strength must not be reduced by more than 20%, preferably not less than 10%, optimally not reduced at all when exposed to heat up to 800° C. Embodiments of the invention include low-density high-temperature-resistant geopolymer concrete which increases load bearing strength when exposed to temperatures above 400° C., preferably at 800° C. Key constituents for forming most embodiments include a geopolymer source such as fly ash, a cement-coated expanded vermiculite, a fiber such as wollastonite, and soluble silicates such as alkali silicates.
Abstract:
This application relates to making magnesium oxychloride boards. A magnesium oxychloride slurry is mixed by directing magnesium chloride, magnesium oxide, at least one phosphate, at least one inorganic salt, and water into a mixer and mixing these ingredients together to form a slurry. At least one filler is then mixed with the slurry. The slurry is directed to a mold. The mold is formed with the slurry to form a magnesium oxychloride board. The magnesium oxychloride board is then cured.