Abstract:
This patent relates to the fabrication of diaphragm-based microstructures used primarily for sensing physical phenomena by detecting a change in deflection, resonance, or curvature of the diaphragm. The methods of fabrication described and claimed herein relate primarily to diaphragm-based diaphragms made of silicon, either single crystal or polycrystalline in form, although other materials may be used.
Abstract:
In the field of fiber optic acoustic sensors, a method for acoustic desensitization of certain sections of optic fibers by means of the use of higher elastic modulus coatings, such as an electrodeposited nickel jacket.
Abstract:
A spectra generator having an electrically programmable diffraction grating. There may be a broad band light source that emits light which is diffracted by the grating. Diffracting elements in the grating may be individually adjustable so that generation of a specific spectrum or spectra may be achieved. The diffracting elements may be adjusted according to electrical signals of a program from a computer. The generated synthetic spectra may be used for testing and calibration of spectrometers or other devices. Synthetic spectra may also be used for scene generation and other purposes.
Abstract:
The formation of diaphragms by silicon wafer bonding provides for a structure having at least two such diaphragms with cavities in the wafers to which the diaphragm layer is bonded. Passageways through the wafers provide for communication of a fluid to the diaphragms. In some locations less than all of a plurality of diaphragms may be bonded to only one wafter having a cavity adjacent the diaphragm.
Abstract:
A programmable substance detector includes a light source, a sample cell, a programmable diffraction grating positioned to receive light from the light source and to direct diffracted light to the sample cell, and a detector associated with the cell to detect a match between a characteristic of the diffracted light and a corresponding characteristic of a substance within the cell.
Abstract:
This invention provides apparatus for remote temperature sensing by means of fiber optics in which the sensor is optical and passive, with no electrical power required at the sensor. The temperature-sensing section of the fiber optic makes use of a transparent liquid as core or cladding and in which the transparent liquid has a temperature-dependent index of refraction.