摘要:
A method and apparatus for aligning, stabilizing and registering two or more structures in one or more dimensional space with picometer-scale precision. Low noise laser light is scattered by at least one or more structure or fiducial marks. One mark may be coupled to each structure to be positioned. The light which has been scattered off the fiducial marks is collected in a photo-sensitive device which enables real-time high-bandwidth position sensing of each structure. One or more of the structures should be mounted on a stage, and the stage can move in either one or more dimensions. The photo-sensitive device generates signals in response to the scattered light received, and the signals are used to modulate the position of the stage in a feedback loop.
摘要:
A method and apparatus for aligning, stabilizing and registering two or more structures in one or more dimensional space with picometer-scale precision. Low noise laser light is scattered by at least one or more structure or fiducial marks. One mark may be coupled to each structure to be positioned. The light which has been scattered off the fiducial marks is collected in a photo-sensitive device which enables real-time high-bandwidth position sensing of each structure. One or more of the structures should be mounted on a stage, and the stage can move in either one or more dimensions. The photo-sensitive device generates signals in response to the scattered light received, and the signals are used to modulate the position of the stage in a feedback loop.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.
摘要:
The present invention relates to a method of rapidly and repeatably bringing sharp objects into close proximity to a particular region of interest of a sample with high precision and accuracy in two or three dimensions using a laser guided tip approach with three dimensional registration to the surface.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing an ion beam at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.
摘要:
In a method for processing a nanotube, a vapor is condensed to a solid condensate layer on a surface of the nanotube and then at least one selected region of the condensate layer is locally removed by directing a beam of energy at the selected region. The nanotube can be processed with at least a portion of the solid condensate layer maintained on the nanotube surface and thereafter the solid condensate layer removed. Nanotube processing can include, e.g., depositing a material layer on an exposed nanotube surface region where the condensate layer was removed. After forming a solid condensate layer, an electron beam can be directed at a selected region along a nanotube length corresponding to a location for cutting the nanotube, to locally remove the condensate layer at the region, and an ion beam can be directed at the selected region to cut the nanotube at the selected region.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing an ion beam at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions, exposing the structure at the selected regions. A material layer is then deposited on top of the solid condensate layer and the exposed structure at the selected regions. Then the solid condensate layer and regions of the material layer that were deposited on the solid condensate layer are removed, leaving a patterned material layer on the structure.
摘要:
The invention provides a method for forming a patterned material layer on a structure, by condensing a vapor to a solid condensate layer on a surface of the structure and then localized removal of selected regions of the condensate layer by directing a beam of energy at the selected regions. The structure can then be processed, with at least a portion of the patterned solid condensate layer on the structure surface, and then the solid condensate layer removed. Further there can be stimulated localized reaction between the solid condensate layer and the structure by directing a beam of energy at at least one selected region of the condensate layer.