Abstract:
An induction heating cooker and a control method thereof that stably adjust power of a cooking coil when a plurality of containers having different cooking conditions is placed on the cooking coil includes a plurality of heating coils disposed below a cooking plate and a controller to determine whether a container is placed on the heating coils, wherein the controller determines whether a plurality of containers is placed on one of the heating coils and, when the containers are placed on one of the heating coils, adjusts a power of the heating coil on which the containers are placed based on powers of other heating coils occupied by the containers. Cooking using a plurality of containers is stably performed based on user intention even when cooking conditions of the containers placed on a heating coil differ.
Abstract:
An induction heating cooker and a control method thereof that prevents the occurrence of an error caused during recognition of a container in the induction heating cooker that performs cooking regardless of where the container is placed on a cooking plate includes a plurality of heating coils disposed below a cooking plate, current detectors to detect values of current flowing in the respective heating coils, and a controller to determine whether a container is placed on the respective heating coils based on the detected current values of the heating coils and change amounts of the current values.
Abstract:
An induction heating cooker including a cooking plate on which a cooking vessel is placed, a plurality of heating coils disposed while being adjacent to one other below the cooking plate, and a Printed Circuit Board (PCB) on which circuits configured to drive the heating coils are placed, wherein the PCB is divided into a high frequency circuit part on which circuits characterized by high frequency are placed and a low frequency circuit part on which circuits characterized by low frequency are placed, and the high frequency circuit part is spaced apart from the low frequency circuit part by a predetermined distance. The interference between the high frequency circuit part and the low frequency circuit part is minimized while enhancing the operation efficiency of each heating coil. The assembly efficiency and the working efficiency are enhanced when an inverter circuit is wired to a corresponding heating coil.
Abstract:
The image forming apparatus includes a developing cartridge mounted perpendicular to a horizontal printing medium delivery path. The developing cartridge contains a developer storage region, a supply roller, and a developing roller, which are successively arranged from the top to the bottom at one side of an optical path through which a vertically irradiated beam from a light scanning unit reaches a photoconductive medium, thereby ensuring the minimum body size.
Abstract:
An apparatus and method for processing a substrate using neutralized beams are provided. A substrate processing apparatus includes an ion source generating device configured to form an ion source. An ion extraction device is configured to extract and accelerate ions from the ion source. An ion neutralizing device is configured to convert the ions extracted and accelerated from the ion extraction device into neutralized beams. A remaining portion of the ions extracted and accelerated from the ion extraction device is not converted into the neutralized beams. A substrate support is configured to support a substrate such that the neutralized beams are directed towards the substrate support. A substrate power supply is configured to apply a voltage to the substrate support such that the remaining portion of the ions that is not converted into the neutralized beams is directed away from the substrate support by the applied voltage of the substrate.
Abstract:
A method of manufacturing a semiconductor device includes alternately stacking mold insulating layers and sacrificial layers on a substrate; forming channel holes penetrating through the mold insulating layers and the sacrificial layers and allowing recessed regions to be formed in the substrate; cleaning a surface of the recessed regions in such a manner that processes of forming a first protective layer in an upper region of the channel holes and performing an anisotropic dry etching process on the recessed regions in a lower portion of the channel holes are alternately repeated one or more times, in-situ; and forming epitaxial layers on the recessed regions of the substrate.
Abstract:
An induction heating cooker including a temperature sensor disposed between a plurality of working coils which are uniformly disposed below a cooking table and a heat transfer member to transfer heat from the working coils adjacent to the temperature sensor to the temperature sensor, thereby improving productivity and space utilization.
Abstract:
Provided is a staircase-shaped connection structure of a three-dimensional semiconductor device. The device includes an electrode structure on a substrate, the electrode structure including an upper staircase region, a lower staircase region, and a buffer region therebetween. The electrode structure includes horizontal electrodes sequentially stacked on the substrate, the horizontal electrodes include a plurality of pad regions constituting a staircase structure of each of the upper and lower staircase regions, and the buffer region has a width that is larger than that of each of the pad regions.
Abstract:
A method of manufacturing a vertical memory device includes: providing a substrate including a cell array region and a peripheral circuit region; forming a mold structure in the cell array region; forming a mold protection film in a portion of the cell array region and the peripheral circuit region, the mold protection film contacting the mold structure; forming an opening for a common source line that passes through the mold structure and extends in a first direction perpendicular to a top surface of the substrate; forming a peripheral circuit contact hole that passes through the mold protection film and extends in the first direction in the peripheral circuit region; and simultaneously forming a first contact plug and a second contact plug, respectively, in the opening for the common source line and in the peripheral circuit contact hole.
Abstract:
The present invention relates to a modified human tumor necrosis factor receptor-1 polypeptide which is capable of binding to a tumor necrosis factor in vivo or ex vivo, or to a fragment thereof. The modified human tumor necrosis factor receptor-1 polypeptide or the fragment thereof according to the present invention exhibit improved binding affinity to the tumor necrosis factor.