Abstract:
The exemplary embodiments of the present invention include forming a photoconductor thin film on a front surface of a substrate; forming a photoconductor thin film pattern by patterning the photoconductor thin film; and forming a metal electrode on the photoconductor thin film pattern.
Abstract:
Provided is a folded dipole antenna including a meander line formed on a photoconductive substrate, characterized by an input impedance of several kΩ, which is much higher than that of a conventional dipole antenna, due to optimization of a horizontal length, a line interval, a width, and a line number of the meander line. Accordingly, use of the folded dipole antenna greatly improves an impedance matching characteristic between the antenna and a photomixer having an output impedance of 10 kΩ or more, and accordingly an output of a THz continuous wave.
Abstract:
A ferroelectric/paraelectric multilayer thin film having a high tuning rate of a dielectric constant and small dielectric loss to overcome limitations of a tuning rate of a dielectric constant and dielectric loss of a ferroelectric thin film, a method of forming the same, and a high frequency variable device having the ferroelectric/paraelectric multilayer thin film are provided. The ferroelectric/paraelectric multilayer thin film includes a perovskite ABO3 structure paraelectric seed layer formed on a substrate, and an epitaxial ferroelectric (BaxSr1-x)TiO3 thin film formed on the paraelectric seed layer. The high frequency variable device can realize a RF frequency/phase variable device having a high speed, low power consumption, and low prices and excellent microwaves characteristics.
Abstract translation:具有介电常数高的调谐率和小的介电损耗的铁电/直流多层薄膜,以克服介电常数的调谐率和铁电薄膜的介电损耗的限制,其形成方法和高 提供具有铁电/顺电多层薄膜的高频可变器件。 铁电/顺电多层薄膜包括在基板上形成的钙钛矿ABO 3结构顺电晶种层,外延铁电(Ba x Sr Sr 1-x < / SUB>)TiO 3薄膜形成在顺电种子层上。 高频可变装置可以实现具有高速度,低功耗,低价格和优异的微波特性的RF频率/相位可变装置。
Abstract:
Disclosed is a terahertz wave generator which includes a first light source outputting a first light having a first frequency; a second light source outputting a second light having a second frequency different from the first frequency; a second harmonic generation unit performing second harmonic conversion on the first and second lights to generate a third light and a fourth light; and a photomixer converting a mixing light of the third and fourth lights into a terahertz wave alternating signal and outputting a terahertz wave.
Abstract:
Provided are a phase shifter with a photonic band gap (PBG) structure using a ferroelectric thin film. The phase shifter includes a microstrip transmission line acting as a microwave input/output line and a plurality of tunable capacitors arranged in the microstrip transmission line at regular intervals. Electrodes disposed on a substrate apply DC voltages to the plurality of tunable capacitors. Radio frequency (RF) chokes and quarter wavelength radial-stubs are connected between the electrodes and the microstrip transmission line in order to prevent high frequency signals from flowing into a DC bias terminal. A plurality of PBGS are periodically arrayed on a ground plane of the substrate.
Abstract:
A device characteristics measurement method using an all-optoelectronic terahertz photomixing system includes: calculating power of an antenna of a transmitter by adding a matching condition between output impedance of the photomixer and input impedance of the antenna of the transmitter to power of the photomixer of the transmitter; calculating power of an antenna of a receiver based on the power of the antenna of the transmitter; and outputting the power of the antenna of the transmitter and the power of the antenna of the receiver so as to analyze device characteristics of the photomixer and the antenna of the transmitter.
Abstract:
Provided are a phase shifter with a photonic band gap (PBG) structure using a ferroelectric thin film. The phase shifter includes a microstrip transmission line acting as a microwave input/output line and a plurality of tunable capacitors arranged in the microstrip transmission line at regular intervals. Electrodes disposed on a substrate apply DC voltages to the plurality of tunable capacitors. Radio frequency (RF) chokes and quarter wavelength radial-stubs are connected between the electrodes and the microstrip transmission line in order to prevent high frequency signals from flowing into a DC bias terminal. A plurality of PBGS are periodically arrayed on a ground plane of the substrate.
Abstract:
Disclosed is a terahertz wave generator which includes a first light source outputting a first light having a first frequency; a second light source outputting a second light having a second frequency different from the first frequency; a second harmonic generation unit performing second harmonic conversion on the first and second lights to generate a third light and a fourth light; and a photomixer converting a mixing light of the third and fourth lights into a terahertz wave alternating signal and outputting a terahertz wave.
Abstract:
The exemplary embodiments of the present invention include forming a photoconductor thin film on a front surface of a substrate; forming a photoconductor thin film pattern by patterning the photoconductor thin film; and forming a metal electrode on the photoconductor thin film pattern.
Abstract:
A frequency tunable terahertz continuous wave generator controls the number of feedbacks of an optical signal output from an optical intensity modulator by adding a feedback loop between input and output terminals of the optical intensity modulator, thereby simply tuning a frequency of a terahertz continuous wave.