Abstract:
In some embodiments, a gas distribution system may include a body disposed within a through hole formed in a process chamber body, the body comprising an opening, wherein an outer surface of the body is disposed a first distance from an inner surface of the through hole to form a first gap; a flange disposed proximate a first end of the body, the flange having an outer dimension greater than an inner dimension of the through hole; a showerhead disposed proximate a second end of the body opposite the first end and extending outwardly from the body to overlap a portion of the process chamber body, the showerhead configured to allow a flow of gas to an inner volume of the process chamber, wherein an outer surface of the showerhead is disposed a second distance from an inner surface of the process chamber body to form a second gap.
Abstract:
The present invention generally provides apparatus and method for adjusting plasma density distribution in an inductively coupled plasma chamber. One embodiment of the present invention provides an apparatus configured for processing a substrate. The apparatus comprises a chamber body defining a process volume configured to process the substrate therein, and a coil assembly coupled to the chamber body outside the process volume, wherein the coil assembly comprises a coil mounting plate, a first coil antenna mounted on the coil mounting plate, and a coil adjusting mechanism configured to adjust the alignment of the first coil antenna relative to the process volume.
Abstract:
The present invention generally provides apparatus and method for processing a substrate. Particularly, the present invention provides apparatus and methods to obtain a desired distribution of a process gas. One embodiment of the present invention provides an apparatus for processing a substrate comprising an injection nozzle having a first fluid path including a first inlet configured to receive a fluid input, and a plurality of first injection ports connected with the first inlet, wherein the plurality of first injection ports are configured to direct a fluid from the first inlet towards a first region of a process volume, and a second fluid path including a second inlet configured to receive a fluid input, and a plurality of second injection ports connected with the second inlet, wherein the second injection ports are configured to direct a fluid from the second inlet towards a second region of the process volume.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
The present invention generally provides apparatus and method for processing a substrate. Particularly, the present invention provides apparatus and methods to obtain a desired distribution of a process gas. One embodiment of the present invention provides an apparatus for processing a substrate comprising an injection nozzle having a first fluid path including a first inlet configured to receive a fluid input, and a plurality of first injection ports connected with the first inlet, wherein the plurality of first injection ports are configured to direct a fluid from the first inlet towards a first region of a process volume, and a second fluid path including a second inlet configured to receive a fluid input, and a plurality of second injection ports connected with the second inlet, wherein the second injection ports are configured to direct a fluid from the second inlet towards a second region of the process volume.
Abstract:
In some embodiments, a gas distribution system may include a body disposed within a through hole formed in a process chamber body, the body comprising an opening, wherein an outer surface of the body is disposed a first distance from an inner surface of the through hole to form a first gap; a flange disposed proximate a first end of the body, the flange having an outer dimension greater than an inner dimension of the through hole; a showerhead disposed proximate a second end of the body opposite the first end and extending outwardly from the body to overlap a portion of the process chamber body, the showerhead configured to allow a flow of gas to an inner volume of the process chamber, wherein an outer surface of the showerhead is disposed a second distance from an inner surface of the process chamber body to form a second gap.
Abstract:
The present invention generally provides apparatus and method for adjusting plasma density distribution in an inductively coupled plasma chamber. One embodiment of the present invention provides an apparatus configured for processing a substrate. The apparatus comprises a chamber body defining a process volume configured to process the substrate therein, and a coil assembly coupled to the chamber body outside the process volume, wherein the coil assembly comprises a coil mounting plate, a first coil antenna mounted on the coil mounting plate, and a coil adjusting mechanism configured to adjust the alignment of the first coil antenna relative to the process volume.
Abstract:
The present invention generally provides apparatus and methods for processing a semiconductor substrate. Particularly, the present invention provides an inductively coupled plasma reactor having improved process uniformity. One embodiment of the present invention provides an apparatus for processing a substrate comprising a chamber body defining a process volume configured to process the substrate therein, an adjustable coil assembly coupled to the chamber body outside the process volume, a supporting pedestal disposed in the process volume and configured to support the substrate therein, and a gas injection assembly configured to supply a process gas towards a first process zone and a second process zone independently.
Abstract:
A pedestal heating system provided for heating a pedestal disposed in the processing chamber of a substrate processing system. A pedestal heating system according to the present invention includes: a heater power supply, a transformer, coupled to the heater power supply, a heater element coupled to the transformer, and an RF ground electrode. The transformer is configured to reduce leakage current from the heater element to various elements of the substrate processing system by localizing current leakage loops. The heater element and RF ground electrode are disposed within the pedestal. Preferably, the transformer is simply an isolation transformer. Where an RF energy source is used, such as in a plasma CVD processing system, an EMI filter may be coupled between the transformer and the heater element, or at another point in the power supply chain to prevent feed-through of RF energy to other of the substrate processing system's subsystems, or other sensitive electronic circuitry coupled to the facility's power supply.
Abstract:
The present invention generally provides methods and apparatus for controlling edge performance during process. One embodiment of the present invention provides an apparatus comprising a chamber body defining a process volume, a gas inlet configured to flow a process gas into the process volume, and a supporting pedestal disposed in the process volume. The supporting pedestal comprises a top plate having a substrate supporting surface configured to receive and support the substrate on a backside, and an edge surface configured to circumscribe the substrate along an outer edge of the substrate, and a height difference between a top surface of the substrate and the edge surface is used to control exposure of an edge region of the substrate to the process gas.