摘要:
An insulating circuit board includes an insulating plate, a circuit board joined to a first surface of the insulating plate, and a metal plate joined to a second surface of the insulating plate. The circuit board is formed from an Al alloy having a purity of 99.98% or more or pure Al, and the metal plate is formed from an Al alloy having a purity of 98.00% or more and 99.90% or less. The thickness (a) of the circuit board is 0.2 mm or more and 0.8 mm or less, the thickness (b) of the metal plate is 0.6 mm or more and 1.5 mm or less, and the thicknesses satisfy the expression of a/b≦1. An insulating circuit board having a cooling sink includes cooling sink joined via a second solder layer. The second solder layer contains Sn as its main component, and has a Young's modulus, 35 GPa or more, a 0.2% proof stress of, 30 MPa or more, and a tensile strength of, 40 MPa or more. The cooling sink is formed from, pure Al or an Al alloy.
摘要翻译:绝缘电路板包括绝缘板,连接到绝缘板的第一表面的电路板和连接到绝缘板的第二表面的金属板。 电路板由纯度为99.98%以上的Al合金或纯Al形成,金属板由纯度为98.00%以上且99.90%以下的Al合金形成。 电路板的厚度(a)为0.2mm以上且0.8mm以下,金属板的厚度(b)为0.6mm以上且1.5mm以下,厚度满足a / b <= 1。 具有冷却槽的绝缘电路板包括通过第二焊料层接合的冷却水槽。 第二焊料层含有Sn作为其主要成分,杨氏模量为35GPa以上,0.2%屈服应力为30MPa以上,拉伸强度为40MPa以上。 冷却槽由纯Al或Al合金形成。
摘要:
A power element mounting substrate including a circuit layer brazed to a surface of a ceramic plate, and a power element soldered to a front surface of the circuit layer, wherein the circuit layer is constituted using an Al alloy with an average purity of more than or equal to 98.0 wt % and less than or equal to 99.9 wt %, Fe concentration of the circuit layer at a side of a surface to be brazed to the ceramic plate is less than 0.1 wt %, and Fe concentration of the circuit layer at a side of the surface opposite to the surface to be brazed is more than or equal to 0.1 wt %.
摘要:
Disclosed is a ceramic substrate including silicon in which the concentration of a silicon oxide and a silicon composite oxide in the surface thereof is less than or equal to 2.7 Atom %.
摘要:
A process reinforcing a silica glass substance, such as a silica glass crucible, is provided without intermixing an impurity. The process comprises forming a silica glass powder layer on a surface of the silica glass substance, and crystallizing said silica glass powder layer under high temperature. As for a silica glass crucible, the process for reinforcing the silica glass crucible and the reinforced silica glass crucible are provided, wherein the silica glass powder layer on the whole or a part of the surface of the crucible is formed and then, crystallized under a temperature at the melting of a silicon raw material being charged into said quartz glass crucible.
摘要:
Disclosed is a power module having improved joint reliability. Specifically disclosed is a power module including a power module substrate wherein a circuit layer is brazed on the front surface of a ceramic substrate, a metal layer is brazed on the rear surface of the ceramic substrate and a semiconductor chip is soldered to the circuit layer. The metal layer is composed of an Al alloy having an average purity of not less than 98.0 wt. % but not more than 99.9 wt. % as a whole. In this metal layer, the Fe concentration in the side of a surface brazed with the ceramic substrate is set at less than 0.1 wt. %, and the Fe concentration in the side of a surface opposite to the brazed surface is set at not less than 0.1 wt. %.
摘要:
A power module substrate having a heatsink, includes: a power module substrate having an insulating substrate having a first face and a second face, a circuit layer formed on the first face, and a metal layer formed on the second face; and a heatsink directly connected to the metal layer, cooling the power module substrate, wherein a ratio B/A is in the range defined by 1.55≦B/A≦20, where a thickness of the circuit layer is represented as A, and a thickness of the metal layer is represented as B.
摘要翻译:具有散热器的功率模块基板包括:具有绝缘基板的功率模块基板,具有第一面和第二面,在所述第一面上形成的电路层,以及形成在所述第二面上的金属层。 和直接连接到金属层的散热片,冷却功率模块基板,其中比率B / A在由1.55 @ B / A @ 20定义的范围内,其中电路层的厚度表示为A,而 金属层的厚度表示为B.
摘要:
A power element mounting substrate including a circuit layer brazed to a surface of a ceramic plate, and a power element soldered to a front surface of the circuit layer, wherein the circuit layer is constituted using an Al alloy with an average purity of more than or equal to 98.0 wt % and less than or equal to 99.9 wt %, Fe concentration of the circuit layer at a side of a surface to be brazed to the ceramic plate is less than 0.1 wt %, and Fe concentration of the circuit layer at a side of the surface opposite to the surface to be brazed is more than or equal to 0.1 wt %.
摘要:
Disclosed is a power module having improved joint reliability. Specifically disclosed is a power module including a power module substrate wherein a circuit layer is brazed on the front surface of a ceramic substrate, a metal layer is brazed on the rear surface of the ceramic substrate and a semiconductor chip is soldered to the circuit layer. The metal layer is composed of an Al alloy having an average purity of not less than 98.0 wt. % but not more than 99.9 wt. % as a whole. In this metal layer, the Fe concentration in the side of a surface brazed with the ceramic substrate is set at less than 0.1 wt. %, and the Fe concentration in the side of a surface opposite to the brazed surface is set at not less than 0.1 wt. %.
摘要:
A power module substrate having a heatsink, includes: a power module substrate having an insulating substrate having a first face and a second face, a circuit layer formed on the first face, and a metal layer formed on the second face; and a heatsink directly connected to the metal layer, cooling the power module substrate, wherein a ratio B/A is in the range defined by 1.55≦B/A≦20, where a thickness of the circuit layer is represented as A, and a thickness of the metal layer is represented as B.
摘要:
A process reinforcing a silica glass substance, such as a silica glass crucible, is provided without intermixing an impurity. The process comprises forming a silica glass powder layer on a surface of the silica glass substance, and crystallizing said silica glass powder layer under high temperature. As for a silica glass crucible, the process for reinforcing the silica glass crucible and the reinforced silica glass crucible are provided, wherein the silica glass powder layer on the whole or a part of the surface of the crucible is formed and then, crystallized under a temperature at the melting of a silicon raw material being charged into said quartz glass crucible.