摘要:
There is provided a technique to form a single crystal semiconductor thin film or a substantially single crystal semiconductor thin film. A catalytic element for facilitating crystallization of an amorphous semiconductor thin film is added to the amorphous semiconductor thin film, and a heat treatment is carried out to obtain a crystalline semiconductor thin film. After the crystalline semiconductor thin film is irradiated with ultraviolet light or infrared light, a heat treatment at a temperature of 900 to 1200° C. is carried out in a reducing atmosphere. The surface of the crystalline semiconductor thin film is extremely flattened through this step, defects in crystal grains and crystal grain boundaries disappear, and the single crystal semiconductor thin film or substantially single crystal semiconductor thin film is obtained.
摘要:
The invention provides a light emitting device which can suppress the reduction of luminance in accordance with the light emission time and light emission at a high luminance. Moreover, the invention relates to a driving method which can suppress the reduction of luminance in accordance with the light emission time and light emission at a high luminance. The light emitting device of the invention can display a plurality of colors of which brightness and chromaticity are different by visually mixing light emission of a plurality of light emitting elements of which light emission colors are different. When a visually mixed display color is formed, a white light emission is exhibited.
摘要:
After an amorphous semiconductor thin film is crystallized by utilizing a catalyst element, the catalyst element is removed by performing a heat treatment in an atmosphere containing a halogen element. A resulting crystalline semiconductor thin film exhibits {110} orientation. Since individual crystal grains have approximately equal orientation, the crystalline semiconductor thin film has substantially no grain boundaries and has such crystallinity as to be considered a single crystal or considered so substantially.
摘要:
A semiconductor device having performance comparable with a MOSFET is provided. An active layer of the semiconductor device is formed by a crystalline silicon film crystallized by using a metal element for promoting crystallization, and further by carrying out a heat treatment in an atmosphere containing a halogen element to carry out gettering of the metal element. The active layer after this process is constituted by an aggregation of a plurality of needle-shaped or column-shaped crystals. A semiconductor device manufactured by using this crystalline structure has extremely high performance.
摘要:
It is an object of the invention to provide a light emitting device in which burden on a light emitting element having low luminous efficiency is relieved, and the deterioration of a light emitting element, the reduction in color reproduction due to the deteriorated light emitting element, and increase in electric power consumption can be suppressed. A light emitting device according to the invention has light emitting elements each of which emits one of colors corresponding to three primary colors. Further, one feature of the light emitting device according to the invention has a light emitting element which emits a neutral color. The light emitting device according to the invention has a structure in which a plurality of pixels having light emitting elements each of which emits one of colors corresponding to three primary colors, and a light emitting element which emits a neutral color as one group, are arranged.
摘要:
A first insulating thin film having a large dielectric constant such as a silicon nitride film is formed so as to cover a source line and a metal wiring that is in the same layer as the source line. A second insulating film that is high in flatness is formed on the first insulating film. An opening is formed in the second insulating film by etching the second insulating film, to selectively expose the first insulating film. A conductive film to serve as a light-interruptive film is formed on the second insulating film and in the opening, whereby an auxiliary capacitor of the pixel is formed between the conductive film and the metal wiring with first the insulating film serving as a dielectric. The effective aperture ratio can be increased by forming the auxiliary capacitor in a selected region where the influences of alignment disorder of liquid crystal molecules, i.e., disclination, are large.
摘要:
A wiring line is electrically connected in parallel to an auxiliary wiring line via a plurality of contact holes. The contact holes are formed through an insulating film and arranged in vertical direction to the wiring line. Since the auxiliary wiring line is formed in the same layer as an electrode that constitutes a TFT, the electric resistance of the wiring line can be reduced effectively without increasing the number of manufacturing steps.
摘要:
An object of the present invention is to provide a technology of reducing a nickel element in the silicon film which is crystallized by using nickel. An extremely small amount of nickel is introduced into an amorphous silicon film which is formed on the glass substrate. Then this amorphous silicon film is crystallized by heating. At this time, the nickel element remains in the crystallized silicon film. Then an amorphous silicon film is formed on the surface of the silicon film crystallized with the action of nickel. Then the amorphous silicon film is further heat treated. By carrying out this heat treatment, the nickel element is dispersed from the crystallized silicon film into the amorphous silicon film with the result that the nickel density in the crystallized silicon film is lowered.
摘要:
A process for fabricating a highly stable and reliable semiconductor, comprising: coating the surface of an amorphous silicon film with a solution containing a catalyst element capable of accelerating the crystallization of the amorphous silicon film, and heat treating the amorphous silicon film thereafter to crystallize the film.
摘要:
An object is to provide a method of activating impurity elements added to a semiconductor film, and a method of gettering, in a process of manufacturing a semiconductor device using a substrate having a low resistance to heat, such as glass, without changing the shape of the substrate, by using a short time heat treatment process. Another object is to provide a heat treatment apparatus that makes this type of heat treatment process possible. A unit for supplying a gas from the upstream side of a reaction chamber, a unit for heating the gas in the upstream side of the reaction chamber, a unit for holding a substrate to be processed in the downstream side of the reaction chamber, and a unit for circulating the gas from the downstream side of the reaction chamber to the upstream side are prepared. The amount of electric power used in heating the gas can be economized by circulating the gas used to heat the substrate to be processed. A portion of the circulating gas may be expelled, and can be utilized as a heat source in order to preheat a newly introduced gas.