Abstract:
A photoelectric device includes a ceramic substrate defining a cavity in a top thereof and having two electrode layers beside the cavity. A photoelectric die is received in the cavity. A first packing layer is received in the cavity and encapsulates the photoelectric die. The photoelectric die is electrically connected with the electrode layers via two wires. A reflective cup is mounted on the ceramic substrate and defines a receiving space above the top of the ceramic substrate and the first packing layer. A second packing layer is received in the receiving space and covers the first packing layer.
Abstract:
A semiconductor package includes at least four lead frames each having an extending portion and a connecting portion, a heat dissipation plate having a top surface and a bottom surface, at least one semiconductor chip positioned on the top surface of the heat dissipation plate. At least one conductive wire electrically connects the chip to the lead frames. An encapsulation covers the lead frames, the heat dissipation plate, the semiconductor chip, and the conductive wires, while the bottom surface of the heat dissipation plate and the extending portions of the lead frames are exposed.
Abstract:
A method for fabricating a photoelectric device initially provides a ceramic substrate comprising a thermal dissipation layer on a bottom layer of the ceramic substrate, an electrode layer on the top surface of the ceramic substrate, and a reflective structure in cavities of the ceramic substrate. Next, a plurality of photoelectric dies is disposed on the top surface of the ceramic substrate. Then, a first packaging layer is formed on the top surfaces of the photoelectric dies. Next, the ceramic substrate is placed between an upper mold and a lower mold. Finally, a plurality of lenses is formed on the top surface of the first packaging layer by using an injection molding technique or a transfer molding technique.
Abstract:
A steering control coupling structure used in a children's wagon having a wheel assembly and a towing bar is disclosed to include a linking bracket affixed to the wheel axle of the wheel assembly, a first adapter affixed to a carriage and pivoted with the carriage to the linking bracket by a pivot device, the first adapter having a circular coupling hole and two 135° sector guide holes at two sides of the circular coupling hole, and a second adapter, which is affixed to the linking bracket around the pivot device and has a circular coupling block coupled to the circular hole of the first adapter and two 45° sector guide blocks respectively inserted into the 135° sector guide holes for forcing the second adapter to bias against the first adapter when the towing bar is biased to force the wheel assembly to change the steering direction.
Abstract:
An LED package structure includes an LED die, a lead frame and a housing connecting to the lead frame. The LED die is located on a surface of the lead frame. The housing includes an inner face surrounding the LED die. The inner face has a bottom edge connected to the surface of the lead frame, a top edge and a waist line between the bottom edge and top edge. The bottom edge surrounds an area less than an area surrounded by the waist line. The area surrounded by the waist line is less than an area surrounded by the top edge. The inner face has a curved surface between the waist line and the bottom edge.
Abstract:
A semiconductor package includes at least four lead frames each having an extending portion and a connecting portion, a heat dissipation plate having a top surface and a bottom surface, at least one semiconductor chip positioned on the top surface of the heat dissipation plate. At least one conductive wire electrically connects the chip to the lead frames. An encapsulation covers the lead frames, the heat dissipation plate, the semiconductor chip, and the conductive wires, while the bottom surface of the heat dissipation plate and the extending portions of the lead frames are exposed.
Abstract:
A medical light device includes a main body, a light source, a filler, and a contact part. A cavity, receiving a light source, is disposed on the main body. The filler is composed of transparent material, filled inside the cavity, and covers the light source. The contact part, composed of soft and transparent material, is placed adjacent to the filler, covering the surface of the filler. The refractive index difference between the contact part and the filler is smaller than the refractive index difference between the filler and air.
Abstract:
A buckle assembly for mounting a goggle on a helmet. The goggle is connected with a strap. The buckle assembly includes a first buckle having a main body. The strap is connected at an end of the main body. A buckling portion is formed on the main body. The buckling portion forms a buckling hole and a buckling flange, and a grip portion is connected to another end of the main body. A second buckle includes a main plate and a locating portion, a buckling portion which is formed of catch plates which can be bent inwards and outwards, and a claw is outwardly disposed on each catch plate for catching the buckling flange of the first buckle. A buckle locator includes a base, a locating portion for connecting the locating portion of the second buckle, and allocating portion for connecting the helmet.
Abstract:
An LED package structure includes an LED die, a lead frame and a housing connecting to the lead frame. The LED die is located on a surface of the lead frame. The housing includes an inner face surrounding the LED die. The inner face has a bottom edge connected to the surface of the lead frame, a top edge and a waist line between the bottom edge and top edge. The bottom edge surrounds an area less than an area surrounded by the waist line. The area surrounded by the waist line is less than an area surrounded by the top edge. The inner face has a curved surface between the waist line and the bottom edge.
Abstract:
A method for fabricating a photoelectric device initially provides a ceramic substrate comprising a thermal dissipation layer on a bottom layer of the ceramic substrate, an electrode layer on the top surface of the ceramic substrate, and a reflective structure in cavities of the ceramic substrate. Next, a plurality of photoelectric dies is disposed on the top surface of the ceramic substrate. Then, a first packaging layer is formed on the top surfaces of the photoelectric dies. Next, the ceramic substrate is placed between an upper mold and a lower mold. Finally, a plurality of lenses is formed on the top surface of the first packaging layer by using an injection molding technique or a transfer molding technique.