Abstract:
A semiconductor device package and a method thereof are able to reliably package a semiconductor device on a substrate without using flux. The semiconductor device package includes a semiconductor device and a substrate reciprocally disposed with respect to the semiconductor device, wherein the substrate includes a side reciprocal to the semiconductor device on which there are formed a plurality of prominences surrounding an accommodation region where the semiconductor device is to be disposed. The method of packaging a semiconductor device includes preparing the semiconductor device, preparing a substrate, forming a plurality of prominences to surround an accommodation region on the substrate where the semiconductor device is to be disposed, dropping the semiconductor device within the accommodation region, and packaging the semiconductor device on the substrate.
Abstract:
The present invention relates to the information protection of digital content transferred by streaming and download service through wire or wireless Internet network. The information protection system in this invention suggests a drastic prevention method of copyrights infringement such as illegal copy and unauthorized distribution of digital content, by using of the encryption, decryption, distribution, and authentication technologies. This invention suggests the control technology of general viewer program, not the specific viewer program for information protection, using a network filter driver for streaming and file system filter driver for download service. The main function of network and file system filter driver is the filtering operation such as a hooking, changing, decrypting, and restoring of message and data packet, and transferring to the viewer program. The main idea and technology of this invention suggest higher secure and efficient digital information protection system for live/VOD/HTTP streaming and download service.
Abstract:
Provided are an image sensor package used as a semiconductor device package and a method of packaging the image sensor package. The package and method prevent defects in sealing rings and connections for electrical connection during manufacturing process, by designating the melting point of solder balls used for the image sensor package different from the melting point of solder used in other bonding applications.The semiconductor device package includes a semiconductor device, a substrate assembly, a solder sealing ring, and a plurality of solder balls. The substrate assembly is disposed facing the semiconductor device. The solder sealing ring tightly seals the semiconductor device and the substrate assembly. The solder balls are formed in an outer periphery of the solder sealing ring of the substrate assembly. The solder sealing ring has a higher melting point than the solder balls.
Abstract:
A semiconductor device package and method for its fabrication are provided. The semiconductor device package generally includes at least one semiconductor die and a substrate coupled to the semiconductor die. The semiconductor die is provided with a front side defining a sealing area, and a first solder sealing ring pad formed on that front side. The substrate is provided with a front surface opposing the front side of the semiconductor die on which a second solder sealing ring pad is formed. A solder sealing ring structure is sandwiched between the first and second solder sealing pads of the substrate and semiconductor die, such that it extends peripherally about a substantial portion of the sealing area to substantially enclose thereat a cavity between the semiconductor die and the substrate. The solder sealing ring structure includes at least one venting portion defining against at least one of the substrate and semiconductor die an air vent in open communication with the cavity.
Abstract:
A semiconductor device package and method for its fabrication are provided. The semiconductor device package generally includes at least one semiconductor die and a substrate coupled to the semiconductor die. The semiconductor die is provided with a front side defining a sealing area, and a first solder sealing ring pad formed on that front side. The substrate is provided with a front surface opposing the front side of the semiconductor die on which a second solder sealing ring pad is formed. A solder sealing ring structure is sandwiched between the first and second solder sealing pads of the substrate and semiconductor die, such that it extends peripherally about a substantial portion of the sealing area to substantially enclose thereat a cavity between the semiconductor die and the substrate. The solder sealing ring structure includes at least one venting portion defining against at least one of the substrate and semiconductor die an air vent in open communication with the cavity.
Abstract:
The present invention relates to an apparatus, unit and method for testing image sensor packages, which can automatically test whether the image sensor packages are defective before they are assembled into camera modules. An apparatus for testing image sensor packages according to the present invention comprises a seating unit on which image sensor packages are seated for tests; a testing section having a lens and a light source above the image sensor packages to perform an open and short test and an image test for the image sensor packages; and a controlling and processing unit having a tester module for performing the open and short test and the image test for the image sensor packages. A method for testing image sensor packages according to the present invention comprises the steps of connecting the image sensor packages to a tester module for performing tests for checking whether the image sensor packages are defective; and carrying out an open and short test and an image test for the image sensor packages while irradiating light on the image sensor packages through a lens or blocking the light.
Abstract:
A semiconductor device package and method for its fabrication are provided. The semiconductor device package generally includes at least one semiconductor die and a substrate coupled to the semiconductor die. The semiconductor die is provided with a front side defining a sealing area, and a first solder sealing ring pad formed on that front side. The substrate is provided with a front surface opposing the front side of the semiconductor die on which a second solder sealing ring pad is formed. A solder sealing ring structure is sandwiched between the first and second solder sealing pads of the substrate and semiconductor die, such that it extends peripherally about a substantial portion of the sealing area to substantially enclose thereat a cavity between the semiconductor die and the substrate. The solder sealing ring structure includes at least one venting portion defining against at least one of the substrate and semiconductor die an air vent in open communication with the cavity.
Abstract:
Disclosed is a diamond tool having a metal plate inserted therein. Between abrasive layers containing diamond particles is inserted a ferrous or non-ferrous metal plate having a wear resistance lower than that of the abrasive layers such that a concave groove is spontaneously formed during a cutting process, thereby reducing the contact load with a workpiece to thereby avoid vibration (wobbling) of a shank, and providing a discharge path for smoothly removing cutting chips and the cooling water. In addition, the content of abrasives and the wear resistance of bonding material are uniformly constituted so that the shrinkage rate does not need to be considered during sintering and the manufacturing process can be simplified, thereby reducing the manufacturing cost and improving the productivity therefor. Furthermore, the area of the metal plate can be controlled, thereby enabling an easy design conforming to the working conditions with a workpiece.
Abstract:
The present invention relates to a camera module, which comprises a packaged image sensor, an IR filter, a lens and a holder for holding these components and has a reduced overall size and height. A camera module according to the present invention comprises an image sensor package having a translucent substrate formed thereon; and a holder having a lower end attached to the translucent substrate of the image sensor package. At this time, the holder comprises a horizontal portion formed with a through-hole and a connecting portion extending downwardly from an edge of the horizontal portion, and an end surface of a lower end of the connecting portion is formed with an inner stepped portion so as to be attached to a peripheral portion of a top surface and a lateral surface of the translucent substrate. Alternatively, the holder comprises a horizontal portion formed with a through-hole and a connecting portion extending downwardly from an edge of the horizontal portion, and an end surface of a lower end of the horizontal portion is formed to be flat such that it is attached to a peripheral portion of a top surface of the translucent substrate. Otherwise, the holder comprises a horizontal portion formed with a through-hole, and a bottom surface of the horizontal portion is attached to at least a peripheral portion of a top surface of the translucent substrate.
Abstract:
The present invention relates to an apparatus, unit and method for testing image sensor packages, which can automatically test whether the image sensor packages are defective before they are assembled into camera modules. An apparatus for testing image sensor packages according to the present invention comprises a seating unit on which image sensor packages are seated for tests; a testing section having a lens and a light source above the image sensor packages to perform an open and short test and an image test for the image sensor packages; and a controlling and processing unit having a tester module for performing the open and short test and the image test for the image sensor packages. A method for testing image sensor packages according to the present invention comprises the steps of connecting the image sensor packages to a tester module for performing tests for checking whether the image sensor packages are defective; and carrying out an open and short test and an image test for the image sensor packages while irradiating light on the image sensor packages through a lens or blocking the light.