Abstract:
The invention relates to methods and systems for the use of an oligomer recyclate from a depolymerization product stream. The oligomer byproduct of a polyester depolymerization reaction can be used as a reactant in the formation of a polyester. For example, linear oligomer byproduct can be used as a reactant in a solution polymerization to form a low-acid polyalkylene terephthalate.
Abstract:
The invention relates to methods and systems for selective removal of catalyst residue from a depolymerization product stream without a water quench, as well as methods and systems for subsequent recovery of residual linear oligomer. The substantially metal-free and substantially water-free residual oligomer byproduct can then be advantageously used as recyclate in a process for preparing MPO. For example, the residual oligomer recyclate can be used as a reactant in the polymerization and subsequent depolymerization (cyclization) of low-acid polyester to form MPO.
Abstract:
Disclosed are weatherable polyester soft block copolymer compositions comprising copolymers of resorcinol or alternatively phenol, aromatic dicarboxylic acid, and a aliphatic dicarboxylic acid based structural units. These polyester soft block copolymers comprise a substantial proportion of direct linkages between the resorcinol or alternatively the phenol, and the aromatic dicarboxylic acid based structural units, the balance of the linkages being between resorcinol and the aliphatic dicarboxylic acid based structural units.
Abstract:
This disclosure relates to a method for producing and using catalysts in the production of bisphenols, and in particular to a method for producing catalysts which contain poly-sulfur mercaptan promoters, and using these catalysts in the production of bisphenol-A and its derivatives.
Abstract:
Substantially solvent-free multilayer articles characterized by excellent color retention and gloss retention, solvent resistance and recyclability comprise a substrate layer comprising a first material selected from the group consisting of a metal, ceramic, glass, a cellulosic material, a thermoset resin, and a thermoplastic resin, and a resinous coating layer which comprises resorcinol or alkylresorcinol isophthalate/terephthalate ester units. An intermediate layer may also be present.
Abstract:
Block copolyestercarbonates may be prepared by first conducting a reaction between at least one of resorcinol or an alkyl- or haloresorcinol and at least one aromatic dicarboxylic acid dichloride, preferably isophthaloyl dichloride, terephthaloyl dichloride or a mixture thereof, to produce a hydroxy-terminated polyester intermediate, and then conducting a reaction of the intermediate with a carbonate precursor, preferably in the presence of a dihydroxy compound such as bisphenol A. The products have excellent physical properties, including a high degree of weatherability. They may be blended with other polymers such as polycarbonates, poly(alkylene carboxylates), polyarylates, polyetherimides, and addition polymers to improve the weatherability thereof.
Abstract:
Silylmethanethiols have been found to be useful promoters in the acid catalyzed condensation reaction between phenol and acetone to afford bisphenol A. Silylmethanethiols provide improvements in both the rate and selectivity of bisphenol A formation relative to known thiol promoters such as 3-mercaptopropionic acid or hexanethiol.
Abstract:
Quaternary salts having a double helix structure are prepared by the reaction of dihydroxyaromatic compound, preferably a bisphenol, with an alkali metal hydroxide and a quaternary salt, such as a tetraalkylammonium or hexaalkylguanidinium chloride. The quaternary salts and their alkaline hydrolysis products are useful as catalysts in various reactions, including imide formation from bisphenol salts and halo- or nitro-substituted phthalimides and redistribution and equilibration of polycarbonates.
Abstract:
Quaternary salts having a double helix structure are prepared by the reaction of dihydroxyaromatic compound, preferably a bisphenol, with an alkali metal hydroxide and a quaternary salt, such as a tetraalkylammonium or hexaalkylguanidinium chloride. The quaternary salts and their alkaline hydrolysis products are useful as catalysts in various reactions, including imide formation from bisphenol salts and halo- or nitro-substituted phthalimides and redistribution and equilibration of polycarbonates.
Abstract:
The invention relates to methods and systems for preparing macrocyclic polyester oligomer (MPO) directly from monomer via heterogeneous catalysis, rather than by depolymerizing a polyester. For example, in an exemplary embodiment, cyclic poly(butylene terephthalate) (cPBT) is produced by reacting butanediol (BDO) and dimethylterephthalate (DMT) in an organic solvent—for example, ortho-dichlorobenzene (oDCB). The mixture flows over (or otherwise contacts) the catalyst-coated fiberglass or silica gel, e.g., which is packed in a column or bed. MPO is produced in the reaction mixture, while residual linears and catalyst residue remain in the column/bed.