摘要:
This application discloses a light-emitting device comprising a light-emitting stack layer, a first transparent conductive layer disposed below the light-emitting stack layer, a transparent dielectric barrier layer disposed below the first transparent conductive layer, a second transparent conductive layer disposed below the transparent dielectric barrier layer and a metal reflective layer disposed below the second transparent conductive layer wherein an omni-directional reflector (ODR) comprises the metal reflective layer and the second transparent conductive layer. Besides, the first transparent conductive layer is ohmically connected with the light-emitting stack layer.
摘要:
An optoelectronic device such as a light-emitting diode chip is disclosed. It includes a substrate, a multi-layer epitaxial structure, a first metal electrode layer, a second metal electrode layer, a first bonding pad and a second bonding pad. The multi-layer epitaxial structure on the transparent substrate comprises a semiconductor layer of a first conductive type, an active layer, and a semiconductor layer of a second conductive type. The first bonding pad and the second bonding pad are on the same level. Furthermore, the first metal electrode layer can be patterned so the current is spread to the light-emitting diode chip uniformly.
摘要:
The present application is to provide a light-emitting device comprising a metal reflective layer; a first transparent conductive oxide layer having a first refractive index; a second transparent conductive oxide layer having a second refractive index different from the first refractive index, and being between the metal reflective layer and the first transparent conductive oxide layer; and a light-emitting stack layer electrically connected to the second transparent conductive oxide layer substantially through the first transparent conductive layer; wherein there is no light absorbing material between the metal reflective layer and the first transparent conductive oxide layer.
摘要:
A optoelectronic device comprises a semiconductor stack layer; a first transparent conductive oxide (abbreviate as “TCO” hereinafter) layer located on the semiconductor stack layer, wherein the first TCO layer has at least one opening; and a second TCO layer covering the first TCO layer, wherein the second TCO layer is filled into the opening of the first TCO layer and contacted with the semiconductor stack layer, and one of the first TCO layer and the second TCO layer forms an ohmic contact with the semiconductor stack layer.
摘要:
A semiconductor structure with two light emitting diodes in series connection is disclosed. The semiconductor structure comprises two light emitting diodes (LEDs) having the same stack layers and abutting each other but spaced by an isolation trench. The stack layers from a bottom thereof include a thermal conductive substrate, an nonconductive protective layer, a metal adhering layer, a mirror protective layer, a p-type ohmic contact epi-layer, a upper cladding layer, an active layer, and a lower cladding layer. Two p-type ohmic contact metal electrodes for two LEDs are formed on an interface between the mirror protective layer and the ohmic contact epi-layer and buried in the mirror protective layer. The stack layers have first trenches formed therein which exposes the upper cladding layer and electrical connecting channels to connect p-type electrodes. The isolation trench is formed by patterning the exposed upper cladding layer until further exposing the nonconductive protective layer. Two n-type electrodes are formed on the lower cladding layer of two LEDs. A dielectric layer is deposited to fill the isolation trench and covered a sidewall of the first trench so that it can electrically isolate layers of the stack layers of the second LED while a metal connection trace formed thereon to connect the p-type ohmic contact electrode of the first LED and n-type of ohmic electrode of second LED.
摘要:
This invention provides a light-emitting element and the manufacture method thereof. The light-emitting element is suitable for flip-chip bonding and comprises an electrode having a plurality of micro-bumps for direct bonding to a submount. Bonding within a relatively short distance between the light-emitting device and the submount can be formed so as to improve the heat dissipation efficiency of the light-emitting device.
摘要:
An embodiment of present invention discloses a light-emitting device comprising a first multi-layer structure comprising a first lower layer; a first upper layer; and a first active layer able to emit light under a bias voltage and positioned between the first lower layer and the first upper layer; a second thick layer neighboring the first multi-layer structure; a second connection layer associated with the second thick layer; a connective line electrically connected to the second connection layer and the first multi-layer structure; a substrate; and two or more ohmic contact electrodes between the first multi-layer structure and the substrate.
摘要:
A semiconductor structure with two light emitting diodes in series connection is disclosed. The semiconductor structure comprises two light emitting diodes (LEDs) having the same stack layers and abutting each other but spaced by an isolation trench. The stack layers from a bottom thereof include a thermal conductive substrate, an nonconductive protective layer, a metal adhering layer, a mirror protective layer, a p-type ohmic contact epi-layer, a upper cladding layer, an active layer, and a lower cladding layer. Two p-type ohmic contact metal electrodes for two LEDs are formed on an interface between the mirror protective layer and the ohmic contact epi-layer and buried in the mirror protective layer. The stack layers have first trenches formed therein which exposes the upper cladding layer and electrical connecting channels to connect p-type electrodes. The isolation trench is formed by patterning the exposed upper cladding layer until further exposing the nonconductive protective layer. Two n-type electrodes are formed on the lower cladding layer of two LEDs. A dielectric layer is deposited to fill the isolation trench and covered a sidewall of the first trench so that it can electrically isolate layers of the stack layers of the second LED while a metal connection trace formed thereon to connect the p-type ohmic contact electrode of the first LED and n-type of ohmic electrode of second LED.
摘要:
A light-emitting structure includes a package substrate and a light emitter disposed on the package substrate. The package substrate includes a carrier substrate and a plurality of metal units disposed on the carrier substrate. A distance between two arbitrary points on a periphery of the metal unit is defined as a peripheral endpoint distance. The light emitter includes a first electrical metal and a second electrical metal that have different electrical polarities and are separate from each other. A shortest distance between the first electrical metal and the second electrical metal is defined as an electrical metal interval. The electrical metal interval between the first electrical metal and the second electrical metal is greater than the longest peripheral endpoint distance of the metal unit.
摘要:
This invention provides a light-emitting element and the manufacture method thereof. The light-emitting element is suitable for flip-chip bonding and comprises an electrode having a plurality of micro-bumps for direct bonding to a submount. Bonding within a relatively short distance between the light-emitting device and the submount can be formed so as to improve the heat dissipation efficiency of the light-emitting device.