Abstract:
A phase shifter and related load device are provided. The phase shifter includes a phase shifter core and load devices. The phase shifter core has an input port for receiving an input signal, an output port for outputting an output signal, and connection ports. The load devices are coupled to the connection ports, respectively. At least one of the load devices includes first varactor units each having a first node and a second node, where first nodes of the first varactor units are coupled to a first voltage, second nodes of the first varactor units are respectively coupled to a plurality of second voltages, and the second voltages include at least two voltages different from each other. The phase shifter and related load device are capable of mitigating effects resulted from varactor's non-linear C-V curve.
Abstract:
A cooling appliance (100) is provided, including a heat insulation cabinet (10), in which a storage chamber is formed; and a door (11), which cooperates with the heat insulation cabinet (10) to selectively open or close the storage chamber. The cooling appliance (100) further includes an dispenser system (20) capable of allocating ice and liquid, where the dispenser system (20) is used for allocating ice in an ice storage container of the cooling appliance (100) into an dispenser cavity (21). The dispenser system (20) includes an ice channel (40) and a splash-proof component (30), where the splash-proof component (30) includes a buffering part, so as to be used for absorbing at least one part of kinetic energy of ice when the ice passes through, to reduce spreading and splashing of the ice.
Abstract:
An M-way coupler having a first port, M second ports, M transmission line sections, M isolation resistors and a phase shifting network is disclosed, where M is an integer number greater than 1. The M transmission line sections couple the first port to the M second ports, respectively. Each of the M isolation resistors has a first terminal and a second terminal. The first terminals of the M isolation resistors are coupled to the M second ports, respectively. The phase shifting network has M I/O terminals coupled to the second terminals of the M isolation resistors, respectively. The phase shifting network is arranged to provide a phase shift within a predetermined tolerance margin between arbitrary two I/O terminals of the M I/O terminals of the phase shifting network.
Abstract translation:公开了具有第一端口,M个第二端口,M个传输线路段,M个隔离电阻器和一个移相网络的M路耦合器,其中M是大于1的整数.M个传输线段将第一端口耦合到 M个第二个端口。 每个M个隔离电阻具有第一端子和第二端子。 M个隔离电阻器的第一个端子分别耦合到M个第二端口。 相移网络具有分别耦合到M个隔离电阻器的第二端子的M I / O端子。 相移网络被布置成在相移网络的M I / O端子的任意两个I / O端子之间提供预定容限裕度内的相移。
Abstract:
A phase locked loop is provided. The phase locked loop includes a detector, a controlled oscillator and a filtering unit coupled between the detector and the controlled oscillator. The detector generates a phase difference signal according to a reference frequency and an oscillation signal. The controlled oscillator generates the oscillation signal according to a filtered signal. The filtering unit filters the phase difference signal to generate the filtered signal, and the filtering unit has a high frequency filter of which a pole is greater than the reference frequency and less than a frequency of the oscillation signal.
Abstract:
The present invention provides for a solution to reduce locking time with satisfactory performance without the need for significant footprint area for the phase lock loop (PLL) circuits by boosting phase frequency detector (PFD) and charge pump (CP) gains through various circuitry configurations that employ one or more flip-flops, delay elements and advanced circuitry techniques.
Abstract:
A frequency divider comprises a phase selector and a timing circuit. The phase selector is arranged to receive a plurality of input signals and a plurality of control signals and output a plurality of output signals according to the control signals, wherein a predetermined reference voltage and the input signals are selectively chosen to generate the output signals according to the control signals, and the input signals are of a same frequency but different phases. The timing circuit is arranged to receive the output signals and generate the control signals according to the output signals.
Abstract:
A phase-arrayed device includes: a signal processing circuit arranged to generate a specific signal; a first phase-arrayed channel arranged to provide a first phase-arrayed signal according to the specific signal; a first conducting path arranged to conduct the specific signal to the first phase-arrayed channel; a second conducting path arranged to conduct the first phase-arrayed signal to the signal processing circuit; and a detecting circuit, arranged to detect a mismatch between the first phase-arrayed signal and a reference signal to generate a detecting signal utilized for calibrating the first phase-arrayed signal.
Abstract:
A phase locked loop is provided. The phase locked loop includes a detector, a controlled oscillator and a filtering unit coupled between the detector and the controlled oscillator. The detector generates a phase difference signal according to a reference frequency and an oscillation signal. The controlled oscillator generates the oscillation signal according to a filtered signal. The filtering unit filters the phase difference signal to generate the filtered signal, and the filtering unit has a high frequency filter of which a pole is greater than the reference frequency and less than a frequency of the oscillation signal.
Abstract:
A phase shifter and related load device are provided. The phase shifter includes a phase shifter core and load devices. The phase shifter core has an input port for receiving an input signal, an output port for outputting an output signal, and connection ports. The load devices are coupled to the connection ports, respectively. At least one of the load devices includes first varactor units each having a first node and a second node, where first nodes of the first varactor units are coupled to a first voltage, second nodes of the first varactor units are respectively coupled to a plurality of second voltages, and the second voltages include at least two voltages different from each other. The phase shifter and related load device are capable of mitigating effects resulted from varactor's non-linear C-V curve.
Abstract:
For decreasing errors within an analog phase-locked loop, an all-digital phase-locked loop (ADPLL) with digital components and digital operations is used. The ADPLL may also be used for direct frequency modulation (DFM). By defining a proportional path gain of an ADPLL by a bandwidth and a reference frequency of the ADPLL, by a TDC gain, a DCO gain, a dividing ratio of a frequency divider, a gain of an amplifier or a combination thereof, the gain of the amplifier may be adjusted so that an optimal loop bandwidth of the ADPLL may be well calibrated. For achieving the aim of entirely digital of the ADPLL, the gains of the TDC and the DCO may be further adjusted in a digital manner.