Abstract:
Detection and characterization of molecular interactions on membrane surfaces is important to biological and pharmacological research. In one embodiment, silver nanocubes interfaced with glass-supported model membranes form a label-free sensor that measures protein binding to the membrane. The present device and technique utilizes plasmon resonance scattering of nanoparticles, which are chemically coupled to the membrane. In contrast to other plasmonic sensing techniques, this method features simple, solution-based device fabrication and readout. Static and dynamic protein/membrane binding are monitored and quantified.
Abstract:
This invention provides a novel class of substituted macrocyclic metallic compounds. The compounds are useful as peroxynitrite decomposition catalysts. Pharmaceutical compositions, and methods of making and using the compounds, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof are also described.
Abstract:
A supported membrane based, strategy for the presentation of soluble signaling molecules to living cells is described. In this system, the fluidity of the supported membrane enables localized enrichment of ligand density in a configuration reflecting cognate receptor distribution on the cell surface. Display of a ligand in non-fluid supported membranes produces significantly less cell adhesion and spreading, thus demonstrating that this technique provides a means to control functional soluble ligand exposure in a surface array format. Furthermore, this technique can be applied to tether natively membrane-bound signaling molecules such as ephrin A1 to a supported lipid bilayer. Such a surface can modulate the spreading behavior of metastatic human breast cancer cells displaying ligands and biomolecules of choice. The SLB microenvironment provides a versatile platform that can be tailored to controllably and functionally present a multitude of cell signaling events in a parallel surface array format.
Abstract:
The present invention provides a method for detecting an analyte of interest via a bio-barcode assay. The present invention provides a calorimetric bio-barcode method that is capable of detecting minute concentrations of an analyte by relying on porous particles, which enable loading of a large number of barcode DNA per particle, and a metal particle-based colorimetric barcode detection method.
Abstract:
Methods of halogenating a carbon containing compound having an sp3 C—H bond are provided. Methods of fluorinating a carbon containing compound comprising halogenation with Cl or Br followed by nucleophilic substitution with F are provided. Methods of direct oxidative C—H fluorination of a carbon containing compound having an sp3 C—H bond are provided. The halogenated products of the methods are provided.
Abstract:
This invention provides a novel class of substituted macrocyclic porphyrin compounds. The compounds are useful as peroxynitrite decomposition catalysts. Pharmaceutical compositions, and methods of making and using the compounds, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof are also described.
Abstract:
Membrane-based assays using surface detector array devices suitable for use with a biosensor are disclosed. The device is formed of a substrate having a surface defining a plurality of distinct bilayer-compatible surface regions separated by one or more bilayer barrier regions. The bilayer-compatible surface regions carry on them, separated by an aqueous film, supported fluid bilayers. The bilayers may contain selected receptors or biomolecules. A bulk aqueous phase covers the bilayers on the substrate surface. Arrays may be engineered to display natural membrane materials in a native fluid bilayer configuration, permitting high-throughput discovery of drugs that target and affect membrane components. The membrane-based assays detect binding events by monitoring binding-induced changes in one or more physical properties of fluid bilayers.
Abstract:
Methods of halogenating a carbon containing compound having an sp3 C—H bond are provided. Methods of fluorinating a carbon containing compound comprising halogenation with Cl or Br followed by nucleophilic substitution with F are provided. Methods of direct oxidative C—H fluorination of a carbon containing compound having an sp3 C—H bond are provided. The halogenated products of the methods are provided.
Abstract:
A membrane-coated particle composition and methods comprising a particle surrounded by a native cell membrane are disclosed. The cell membrane may contain selected receptors or binding components. At least a portion of the receptors or binding components are oriented on the membrane-coated particle in the same or similar orientation as in the native cell membrane. The membrane-coated particle(s) finds use, for example, in contexts of basic research, proteomics, drug discovery, drug delivery, medical diagnostics, and aspects of patient care.
Abstract:
Methods, kits, cartridges and compounds related to generating chlorine dioxide by exposing ClO2− to at least one of a manganese porphyrin catalyst or a manganese porphyrazine catalyst are described.