Abstract:
An apparatus and method are described for a hardware transactional memory (HTM) profiler. For example, one embodiment of an apparatus comprises a transactional debugger (TDB) recording module to record data related to the execution of transactional memory program code, including data related to the execution of branches and transactional events in the transactional memory program code; and a profiler to analyze portions of the recorded data using trace-based replay techniques to responsively generate profile data comprising transaction-level events and function-level conflict data usable to optimize the transactional memory program code.
Abstract:
A system is disclosed that includes a processor and a dynamic random access memory (DRAM). The processor includes a hybrid transactional memory (HyTM) that includes hardware transactional memory (HTM), and a program debugger to replay a program that includes an HTM instruction and that has been executed has been executed using the HyTM. The program debugger includes a software emulator that is to replay the HTM instruction by emulation of the HTM. Other embodiments are disclosed and claimed.
Abstract:
A system graphically visualizes performance and/or correctness features of a recorded execution of a multi-threaded software program. The system may process chunk-based information recorded during an execution of the multi-threaded program, prepare a graphical visualization of the recorded information, and display the graphical visualization on a display in an animated fashion. The system may allow a viewer to interactively control the display of the animated graphical visualization.
Abstract:
A machine-learning decision system includes an online decision system and an offline decision system. The online decision system produces a first time slice-specific decision output corresponding to a first time slice based on one or more situational inputs received in the first time slice. The offline decision system produces a second Lime slice-specific decision output corresponding to the first time slice based on one or more situational inputs received in the first time slice and in a plurality of subsequent time slices occurring after the first time slice. The system further includes an online training system that conducts negative-reinforcement training of the online decision system in response to a nonconvergence between the first and the second time slice-specific decision outputs.
Abstract:
In an embodiment of a transactional memory system, an apparatus includes a processor and an execution logic to enable concurrent execution of at least one first software transaction of a first software transaction mode and a second software transaction of a second software transaction mode and at least one hardware transaction of a first hardware transaction mode and at least one second hardware transaction of a second hardware transaction mode. In one example, the execution logic may be implemented within the processor. Other embodiments are described and claimed.
Abstract:
Methods and systems to identify and reproduce concurrency bugs in multi-threaded programs are disclosed. An example method disclosed herein includes defining a data type. The data type includes a first predicate associated with a first thread of a multi-threaded program that is associated with a first condition, a second predicate that is associated with a second thread of the multi-threaded program, the second predicate being associated with a second condition, and an expression that defines a relationship between the first predicate and the second predicate. The relationship, when satisfied, causes the concurrency bug to be detected. A concurrency bug detector conforming to the data type is used to detect the concurrency bug in the multi-threaded program.
Abstract:
A mechanism is described for facilitating dynamic and efficient management of instruction atomicity violations in software programs according to one embodiment. A method of embodiments, as described herein, includes receiving, at a replay logic from a recording system, a recording of a first software thread running a first macro instruction, and a second software thread running a second macro instruction. The first software thread and the second software thread are executed by a first core and a second core, respectively, of a processor at a computing device. The recording system may record interleavings between the first and second macro instructions. The method includes correctly replaying the recording of the interleavings of the first and second macro instructions precisely as they occurred. The correctly replaying may include replaying a local memory state of the first and second macro instructions and a global memory state of the first and second software threads.
Abstract:
Various embodiments are generally directed to detecting race conditions arising from uncoordinated data accesses by different portions of an application routine by detecting occurrences of a selected cache event associated with such accesses. An apparatus includes a processor component; a trigger component for execution by the processor component to configure a monitoring unit of the processor component to detect a cache event associated with a race condition between accesses to a piece of data and to capture an indication of a state of the processor component to generate monitoring data in response to an occurrence of the cache event; and a counter component for execution by the processor component to configure a counter of the monitoring unit to enable capture of the indication of the state of the processor component at a frequency less than every occurrence of the cache event. Other embodiments are described and claimed.
Abstract:
A processor is described comprising memory access conflict detection circuitry to identify a conflict pertaining to a transaction being executed by a thread that believes it has locked information within a memory. The processor also includes logging circuitry to construct and report out a packet if the memory access conflict detection circuitry identifies a conflict that causes the transaction to be aborted.
Abstract:
An apparatus and method for improving the efficiency with which speculative critical sections are executed within a transactional memory architecture. For example, a method in accordance with one embodiment comprises: waiting to execute a speculative critical section of program code until a lock is freed by a current transaction; responsively executing the speculative critical section to completion upon detecting that the lock has been freed, regardless of whether the lock is held by another transaction during the execution of the speculative critical section; once execution of the speculative critical section is complete, determining whether the lock is taken; and if the lock is not taken, then committing the speculative critical section and, if the lock is taken, then aborting the speculative critical section.