Abstract:
Embodiments of the present invention include a method of polymerizing olefins comprising contacting olefins with a catalyst composition made by the process of combining a hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form a catalyst composition. Embodiments of the present invention also include catalyst compositions comprising a hindered polyalicyclic alkyl catalyst precursor made by the process of combining the hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form the catalyst composition. In one embodiment, the hindered polyalicyclic alkyl catalyst precursor is formed by first combining an acid, a compound having the formula RX, and a metal oxide selected from the group consisting of Group 3 to Group 10 oxide compounds to produce a catalyst precursor; characterized in that R is selected from the group consisting of hindered polyalicyclic alkyls, and substituted derivatives thereof, and X is selected from the group consisting of any suitable leaving group.
Abstract:
A process for producing polymer particles in a gas phase polymerization reaction using a group 4 metal complex containing at least one cyclic ligand containing delocalized π-electrons and optionally a flow aid.
Abstract:
Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
Abstract:
The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
Abstract:
The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
Abstract:
The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
Abstract:
Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
Abstract:
Embodiments of our invention relate to processes for transitioning among polymerization catalyst systems including processes for transitioning among olefin polymerization reactions using Ziegler-Natta catalysts systems and chromium-based catalyst systems. Among embodiments contemplated are a method of transitioning from a first catalyst to a second catalyst in an olefin polymerization reactor, comprising: adding to the reactor a deactivating agent (DA) selected from one of carbon monoxide, carbon dioxide, or combinations thereof; adding to the reactor a cocatalyst adsorbing agent (CAA), comprising an inorganic oxide selected from one of silica, alumina or combinations thereof; wherein the first catalyst comprises at least one conventional Ziegler-Natta catalyst, and a cocatalyst, wherein the second catalyst comprises at least one chromium-based catalyst, wherein the reactor is a gas-phase, fluidized bed reactor, and wherein the CAA is substantially free of transition metals. In another embodiment a method of transitioning from a first catalyst to a second catalyst in an olefin polymerization reactor is contemplated, comprising: adding a transition aid agent (TAA) wherein the TAA is selected from one of alkoxylated amines, alkoxylated amides, or combinations thereof, wherein the first catalyst comprises at least one Ziegler-Natta catalyst comprising the catalyst, a cocatalyst and optionally a support, and the second catalyst comprises at least one chromium-based catalyst.
Abstract:
Disclosed herein are various processes, including continuous fluidized-bed gas-phase polymerization processes for making a high strength, high density polyethylene copolymer, comprising (including): contacting monomers that include ethylene and optionally at least one non-ethylene monomer with fluidized catalyst particles in a gas phase in the presence of hydrogen gas at an ethylene partial pressure of 100 psi or more and a polymerization temperature of 105° C. or less to produce a polyethylene copolymer having a density of 0.945 g/cc or more and an ESCR Index of 1.0 or more wherein the catalyst particles are prepared at an activation temperature of 700° C. or less, and include silica, chromium, and titanium.