ELECTRON INJECTION-CONTROLLED MICROCAVITY PLASMA DEVICE AND ARRAYS
    1.
    发明申请
    ELECTRON INJECTION-CONTROLLED MICROCAVITY PLASMA DEVICE AND ARRAYS 有权
    电子注入控制微波等离子体装置和阵列

    公开(公告)号:US20100289413A1

    公开(公告)日:2010-11-18

    申请号:US12682974

    申请日:2008-10-27

    IPC分类号: H05B41/36 H01J17/48

    CPC分类号: H01J11/18 H01J61/82

    摘要: An embodiment of the invention is a microcavity plasma device that can be controlled by a low voltage electron emitter. The microcavity plasma device includes driving electrodes disposed proximate to a microcavity and arranged to contribute to generation of plasma in the microcavity upon application of a driving voltage. An electron emitter is arranged to emit electrons into the microcavity upon application of a control voltage. The electron emitter is an electron source having an insulator layer defining a tunneling region. The microplasma itself can serve as a second electrode necessary to energize the electron emitter. While a voltage comparable to previous microcavity plasma devices is still imposed across the microcavity plasma devices, control of the devices can be accomplished at high speeds and with a small voltage, e.g., about 5V to 30V in preferred embodiments.

    摘要翻译: 本发明的一个实施例是可以由低电压电子发射器控制的微腔等离子体装置。 微腔等离子体装置包括靠近微腔设置的驱动电极,并布置成有助于在施加驱动电压时在微腔中产生等离子体。 电子发射器布置成在施加控制电压时将电子发射到微腔中。 电子发射体是具有限定隧道区域的绝缘体层的电子源。 微质体本身可以用作为电子发射体通电所必需的第二电极。 虽然与先前的微腔等离子体器件相当的电压仍然施加在微腔等离子体器件之间,但是在优选实施例中,器件的控制可以在高速和小电压下实现,例如约5V至30V。

    AC-excited microcavity discharge device and method
    2.
    发明授权
    AC-excited microcavity discharge device and method 有权
    AC激发微腔放电装置及方法

    公开(公告)号:US07477017B2

    公开(公告)日:2009-01-13

    申请号:US11042228

    申请日:2005-01-25

    IPC分类号: H01J17/49

    摘要: A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric on a first conducting layer. A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time-varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.

    摘要翻译: 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层上层叠电介质来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当幅度的时变电位时,在微腔中产生微等离子体放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。

    Ultra-thin miniature pump
    4.
    发明申请
    Ultra-thin miniature pump 审中-公开
    超薄型微型泵

    公开(公告)号:US20090169399A1

    公开(公告)日:2009-07-02

    申请号:US12005348

    申请日:2007-12-27

    IPC分类号: F04B17/00

    CPC分类号: F04B19/006 F04D13/0666

    摘要: An ultra-thin miniature pump applied to transport a fluid includes a main body, a rotor, and a stator. The main body includes a cover part and a bottom part. A joint surface between the cover part and the bottom part possesses an anti-leakage device, and a chamber including a suction port and a discharge port is formed inside the main body. The rotor disposed in the chamber includes a magnet set, an impeller, and a central shaft. The magnet set is connected on the surface of the impeller, and the impeller with the magnet set is aligned by the central shaft and rotates in coaxial. The stator disposed in the chamber includes a plurality of coils corresponding to the magnet set axially. The coils and the magnet set generate an axial magnetic flux to make the impeller rotate for transporting the fluid from the suction port to the discharge port.

    摘要翻译: 用于运输流体的超薄型微型泵包括主体,转子和定子。 主体包括盖部和底部。 盖部和底部之间的接合面具有防漏装置,在主体内部形成有包括吸入口和排出口的室。 设置在腔室中的转子包括磁体组,叶轮和中心轴。 磁铁组连接在叶轮的表面,具有磁铁组的叶轮与中心轴对准并同轴旋转。 设置在腔室中的定子包括对应于轴向设置的磁体的多个线圈。 线圈和磁体组产生轴向磁通量,以使叶轮旋转以将流体从吸入口输送到排出口。

    Light driving device
    6.
    发明申请
    Light driving device 有权
    光驱装置

    公开(公告)号:US20080007419A1

    公开(公告)日:2008-01-10

    申请号:US11808393

    申请日:2007-06-08

    IPC分类号: G09F9/33

    CPC分类号: H05B33/0818

    摘要: A light driving device comprises a signal generator, a demultiplexer and a light driving circuit. The signal generator generates a signal. The demultiplexer converts the signal to at least a control signal. The light driving circuit is controlled by the control signal.

    摘要翻译: 光驱动装置包括信号发生器,解复用器和光驱动电路。 信号发生器产生信号。 解复用器将信号转换为至少一个控制信号。 光驱动电路由控制信号控制。

    [BURN-IN SOCKET]
    7.
    发明申请
    [BURN-IN SOCKET] 审中-公开
    [烧嘴]

    公开(公告)号:US20060121753A1

    公开(公告)日:2006-06-08

    申请号:US10904923

    申请日:2004-12-06

    IPC分类号: H01R12/00

    摘要: A burn-in socket for burn-in test is disclosed to include a body holding a set of terminals, and a shell detachably fastened to the body with locating pins that are detachably mounted in respective mounting through holes in the shell and inserted into respective mounting holes in the body for holding a test sample (electronic element) in contact with the terminals.

    摘要翻译: 公开了一种用于老化测试的老化插座,包括一个保持一组端子的主体和一个可拆卸地固定到主体上的壳体,该定位销可拆卸地安装在壳体的各个安装通孔中并插入相应的安装 用于保持与端子接触的测试样品(电子元件)的主体中的孔。

    AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD
    9.
    发明申请
    AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD 有权
    交流微型放电装置及方法

    公开(公告)号:US20080290799A1

    公开(公告)日:2008-11-27

    申请号:US11042228

    申请日:2005-01-25

    IPC分类号: H01J17/49

    摘要: A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric on a first conducting layer. A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time-varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.

    摘要翻译: 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层上层叠电介质来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当幅度的时变电位时,在微腔中产生微等离子体放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。

    Electron injection-controlled microcavity plasma device and arrays
    10.
    发明授权
    Electron injection-controlled microcavity plasma device and arrays 有权
    电子注入控制的微腔等离子体装置和阵列

    公开(公告)号:US08471471B2

    公开(公告)日:2013-06-25

    申请号:US12682974

    申请日:2008-10-27

    IPC分类号: H01J17/49 H05H1/24

    CPC分类号: H01J11/18 H01J61/82

    摘要: An embodiment of the invention is a microcavity plasma device that can be controlled by a low voltage electron emitter. The microcavity plasma device includes driving electrodes disposed proximate to a microcavity and arranged to contribute to generation of plasma in the microcavity upon application of a driving voltage. An electron emitter is arranged to emit electrons into the microcavity upon application of a control voltage. The electron emitter is an electron source having an insulator layer defining a tunneling region. The microplasma itself can serve as a second electrode necessary to energize the electron emitter. While a voltage comparable to previous microcavity plasma devices is still imposed across the microcavity plasma devices, control of the devices can be accomplished at high speeds and with a small voltage, e.g., about 5V to 30V in preferred embodiments.

    摘要翻译: 本发明的一个实施例是可以由低电压电子发射器控制的微腔等离子体装置。 微腔等离子体装置包括靠近微腔设置的驱动电极,并布置成有助于在施加驱动电压时在微腔中产生等离子体。 电子发射器布置成在施加控制电压时将电子发射到微腔中。 电子发射体是具有限定隧道区域的绝缘体层的电子源。 微质体本身可以用作为电子发射体通电所必需的第二电极。 虽然与先前的微腔等离子体器件相当的电压仍然施加在微腔等离子体器件之间,但是在优选实施例中,器件的控制可以在高速和小电压下实现,例如约5V至30V。