Abstract:
A device, a system, and a method for isolating biomolecules from biological materials are provided. The device comprises a quartz-based solid phase extraction matrix comprising one or more reagents impregnated therein; and an electroosmotic pump (EOP) operationally coupled to the quartz-based solid phase extraction matrix to elute the nucleic acids, wherein the EOP comprises a plurality of electroosmotic membranes comprising one or more positive electroosmotic membranes and one or more negative electroosmotic membranes disposed alternatively and a plurality of electrodes comprising one or more cathodes and one or more anodes, wherein at least one cathode is disposed on one side of one of the membranes and at least one anode is disposed on another side of that membrane and at least one cathode or anode is disposed between a positive electroosmotic membrane and a negative electroosmotic membrane.
Abstract:
A device, a system, a cartridge and a method for isolating biomolecules from biological materials are provided. The device comprises a substrate; a reagent storage location; and a self-rupturing component comprising a fluid and a pressure source embedded therein, wherein the substrate, the reagent storage location and the self-rupturing component are operationally coupled to each other. A system is provided, wherein the system comprises an extraction matrix, an enclosed matrix housing comprising a biological sample inlet, one or more biomolecule extraction reagents to extract biomolecules and at least one pressure source embedded therein, a fluidic extraction circuit; and a controller for activating the embedded pressure source. A method of isolating nucleic acids from biological materials is also provided.
Abstract:
The disclosure claims a Selected Internet Protocol Traffic Offload (SIPTO) decision method and device for a Home (evolved) Node-B (H(e)NB) system, both the method and device can judge whether a H(e)NB has the SIPTO authority, and can allow the H(e)NB to implement the SIPTO if the H(e)NB has the SIPTO authority. The method and device of the disclosure can support the SIPTO of the H(e)NB.
Abstract:
A method for a mutual authentication between access network devices and an access network device are disclosed by the present invention. The method includes: configuring a certificate on the access network device; performing a mutual authentication based on the certificate between the access network devices. The present invention realizes the authentication between the access network devices, thus the user data can be transmitted directly.
Abstract:
The present invention discloses a liquid immersing photovoltaic module, which comprises a baseboard, a transparent cover plate, side walls, solar cells or solar cell module and insulating liquid. The insulating liquid is inside a container formed by baseboard, cover plate and side walls. The baseboard is a transparent plate or a metal plate with fins on lower surface. The solar cells are located on the upper surface of the baseboard. The lower surface of the solar cell module is mounted on the top of a supporting board with fins, and the lower ends of the supporting board fins are installed on the top of the baseboard. This invention allows the solar cell to increase the utilization ratio of incident light, reduce the recombination of current carriers on the surface of solar cells, and increase the current output. Moreover, this invention effectively cools the front and back surfaces of solar cells and quickly removes the heat of the working solar cells, which insures the solar cells working at a fairly high efficiency, increases the durability of the solar cells and reduces the power generation cost.
Abstract:
Methods and systems for injecting a sample during electrophoresis, that generally comprise: loading a sieving matrix through a first end of a separation channel; having the an end of the sieving matrix at a set distance from the intersection of the separation channel and a loading channel; pressure loading a sample through the loading channel and filling an empty portion of the separation channel; applying an electric field across the separation channel while flowing a washing buffer through the loading channel; and injecting a portion of the sample into the separation channel, wherein the portion of the sample injected is of a size that is determined by a distance between the end of the sieving matrix and the intersection of the loading and separation channels.
Abstract:
An apparatus and method for a two semiconductor device package where the semiconductor devices are connected in electrical series. The first device is mounted P-side down on an electrically conductive substrate. Non-active area on the P side is isolated from the electrically conductive substrate. The second device is mounted P-side up at a spaced apart location on the substrate. Opposite sides of each are electrically connected to leads to complete the series connection of the two devices. A method of manufacturing such a package includes providing an electrically conductive lead frame, mounting one device P-side up and flipping the other device and mounting it P-side down on the lead frame with non-active area of the P side isolated from the lead frame, and connecting the other side of each device to separate leads. Isolation of the non-active area of the P side of the device can be through modification of the substrate or lead frame surface by grooves or raised portions. Alternatively, it can be by adding an electrically isolating coating on the non-active area of the P-side of a semiconductor device to allow it to be mounted P side down on an electrically conductive substrate or mounting location without modification to the substrate or lead frame.
Abstract:
A heat dissipating apparatus includes a heat spreader (20) for thermally connecting with a heat generating electronic component, a heat sink (10) thermally connected with the heat spreader, and a heat pipe (30) thermally connecting the heat sink with the heat spreader for transferring heat from the heat spreader to the heat sink. The heat pipe includes an evaporation section (31) attached to the heat spreader, two semicircular condensation sections (33, 34) thermally engaging with the heat sink, and two connecting sections (35, 36) each interconnecting a corresponding condensation section and the evaporation section.
Abstract:
An apparatus and method for a two semiconductor device package where the semiconductor devices are connected in electrical series. The first device is mounted P-side down on an electrically conductive substrate. Non-active area on the P side is isolated from the electrically conductive substrate. The second device is mounted P-side up at a spaced apart location on the substrate. Opposite sides of each are electrically connected to leads to complete the series connection of the two devices. A method of manufacturing such a package includes providing an electrically conductive lead frame, mounting one device P-side up and flipping the other device and mounting it P-side down on the lead frame with non-active area of the P side isolated from the lead frame, and connecting the other side of each device to separate leads. Isolation of the non-active area of the P side of the device can be through modification of the substrate or lead frame surface by grooves or raised portions. Alternatively, it can be by adding an electrically isolating coating on the non-active area of the P-side of a semiconductor device to allow it to be mounted P side down on an electrically conductive substrate or mounting location without modification to the substrate or lead frame.
Abstract:
A microchip for capillary electrophoresis is provided. The microchip comprises an injection channel and a separation channel configured to receive a sample through a sample well disposed on a first end of the separation channel; wherein the injection channel and the separation channel intersect to form a ‘T’ junction. The microchip further comprises a first valve disposed adjacent to the ‘T’ junction and on the separation channel and a second valve disposed at the ‘T’ junction. The second valve is a two-way valve. A sample plug is injected into an area between the ‘T’ junction and a second end of the separation channel.