Abstract:
The invention relates to heterogeneous catalysts which are particularly easy to produce. Said heterogeneous catalysts are generated by immobilizing preformed monometallic or multimetallic metal oxide particles in situ on an oxidic or non-oxidic carrier, wherefore metal oxide colloids which are stabilized by hydroxide ions and immobilized on carriers contained in the suspension are generated from conventional, water-soluble metal salts by means of hydrolysis and condensation. The inventive method makes it possible to produce fuel cell catalysts, for example.
Abstract:
The invention claims chiral di- and triphosphites of general formulas (I) or (II), which are bridged by suitable groups. The claimed compounds can be used in asymmetric transition metal catalysis and as chiral transition metal catalysts.
Abstract:
The invention relates to heterogeneous catalysts which are particularly easy to produce. Said heterogeneous catalysts are generated by immobilizing preformed monometallic or multimetallic metal oxide particles in situ on an oxidic or non-oxidic carrier, wherefore metal oxide colloids which are stabilized by hydroxide ions and immobilized on carriers contained in the suspension are generated from conventional, water-soluble metal salts by means of hydrolysis and condensation. The inventive method makes it possible to produce fuel cell catalysts, for example.
Abstract:
A process is described for preparing aromatic and heteroaromatic amines of the general formula (I) Ar—NR1R2, in which an aromatic compound with the general formula (II) Ar—X is reacted in the presence of a catalyst with an amine of the general formula (III) H—NR1R2 and a base, wherein the catalyst is selected from transition metal complexes having one or more ligands with the general formula (IV).
Abstract:
A process is described for preparing aromatic and heteroaromatic amines of the general formula (I) Ar—NR1R2, in which an aromatic compound with the general formula (II) Ar—X is reacted in the presence of a catalyst with an amine of the general formula (III) H—NR1R2 and a base, wherein the catalyst is selected from transition metal complexes having one or more ligands with the general formula (IV).
Abstract:
The invention relates to certain chiral transition metal catalysts, to the metal of which at least two structurally different monophosphorus ligands are bonded, at least one of said monophosphorus ligands being chiral. Said chiral transition metal catalysts are suitable as catalysts for use in asymmetric transition metal-catalyzed reactions, providing better enantioselectivities than in cases where only one structurally defined ligand is used.
Abstract:
The invention relates to a high-throughput screening method based on NMR spectroscopy for determining the enantioselectivity of reactions which show an asymmetric course. The reactions can be caused by chiral catalysts, agents, or biocatalysts such that said products can be evaluated regarding the enantioselectivity thereof. In one embodiment, isotope-marked pseudo-enantiomers or pseudo-prochiral substrates are used such that the enantioselectivity can be quantified by integrating the NMR signals of the respective substrates and/or products. The use of an automated setup of devices, including microtiter plates, robots, and high-throughput NMR devices, is decisive for the high-throughput process. In a second embodiment of the invention, the automated setup of devices is used to detect in a quantitative manner the products and/or educts that have been derivatized with enantiomer-pure agents in the form of diastereomers. At least 1000 ee determinations can be done per day with accuracy of at least ±5 percent in both embodiments.