摘要:
The present invention relates to a polypeptide with HMG-CoA reductase activity, to its polynucleotide congener and to a method for the production of a statin comprising over expression of said polypeptide.
摘要:
The present invention provides a fermentative process for the synthesis of simvastatin by providing a host capable of incorporating the 2,2-dimethylbutyrate side chain into simvastatin, i.e. by customizing a polyketide synthase gene optimized for synthesis and/or incorporation of 2,2-dimethylbutyrate; optionally feeding said host with the appropriate substrate for 2,2-dimethylbutyrate synthesis; fermenting said host to obtain simvastatin or analogues or derivatives thereof, i.e. by producing simvastatin on an industrial scale by a fed-batch process.
摘要:
The present invention provides a method for the fermentative production of compactin, lovastatin, pravastatin or simvastatin comprising culturing a host, preferably a filamentous fungus, comprising the polynucleotide of the lovE transcription regulator gene from Aspergillus terreus. Furthermore, the invention provides a host for the production of above mentioned statines comprising the polynucleotide of the lovE transcription regulator gene from Aspergillus terreus.
摘要:
The present invention provides a polypeptide having an amino acid sequence according to SEQ ID NO 3, SEQ ID NO 6 or SEQ ID NO 43-59. The present invention also provides a polynucleotide comprising a DNA sequence encoding these polypeptides and a method for isolating polynucleotides encoding polypeptides capable of improving the compactin into pravastatin conversion. Furthermore, the present invention provides a method for producing pravastatin and a pharmaceutical composition comprising pravastatin.
摘要翻译:本发明提供具有根据SEQ ID NO 3,SEQ ID NO 6或SEQ ID NO 43-59的氨基酸序列的多肽。 本发明还提供了一种包含编码这些多肽的DNA序列的多核苷酸,以及一种分离编码多肽的方法,所述多核苷酸能够将该致密蛋白改进普伐他汀转化。 此外,本发明提供了普伐他汀的制造方法和含有普伐他汀的药物组合物。
摘要:
The present invention relates to a method for the production of a compound of interest by microbial fermentation, wherein the microbial host cell used has been modified in its genome such that it results in a deficiency in the production of at least one non-ribosomal peptide synthase. The present invention further relates to a microbial host cell that has been modified in its genome such that it results in a deficiency in the production of at least one non-ribosomal peptide synthase. The invention further relates to a compound of interest.
摘要:
The present invention relates to a method for the production of a compound of interest by microbial fermentation, wherein the microbial host cell used has been modified in its genome such that it results in a deficiency in the production of at least one non-ribosomal peptide synthase. The present invention further relates to a microbial host cell that has been modified in its genome such that it results in a deficiency in the production of at least one non-ribosomal peptide synthase. The invention further relates to a compound of interest.
摘要:
The present invention describes a process for the production of an N-α-amino-hydroxyphenylacetyl or an N-α-aminophenylacetyl β-lactam antibiotic comprising an IPNS-catalysed conversion of a precursor tripeptide hydroxyphenylglycyl-cysteinyl-valine (HpgCV) or phenylglycyl-cysteinyl-valine (PgCV), respectively, to the N-hydroxyphenylglycyl or the N-phenylglycyl β-lactam antibiotic, respectively. The tripeptide HpgCV or the tripeptide PgCV may further be prepared by contacting the amino acids hydroxyphenylglycine (Hpg) or phenylglycine (Pg), cystein (C) and valine (V) with a non-ribosomal peptide synthetase (NRPS) to effect formation of the tripeptide HpgCV or the tripeptide PgCV, the NRPS comprising a first module M1 specific for Hpg or Pg, a second module M2 specific for C and a third module M3 specific for V An IPNS is further provided having an improved activity in this conversion, as well as an NRPS catalysing the formation of the tripeptides. Also a host cell is provided capable of fermentatively producing β-lactam antibiotics with N-α-amino-hydroxyphenylacetyl or an N-α-aminophenylacetyl side chains.
摘要:
The present invention describes a process for the production of an N-α-amino-hydroxyphenylacetyl or an N-α-aminophenylacetyl β-lactam antibiotic comprising an IPNS-catalysed conversion of a precursor tripeptide hydroxyphenylglycyl-cysteinyl-valine (HpgCV) or phenylglycyl-cysteinyl-valine (PgCV), respectively, to the N-hydroxyphenylglycyl or the N-phenylglycyl β-lactam antibiotic, respectively. The tripeptide HpgCV or the tripeptide PgCV may further be prepared by contacting the amino acids hydroxyphenylglycine (Hpg) or phenylglycine (Pg), cystein (C) and valine (V) with a non-ribosomal peptide synthetase (NRPS) to effect formation of the tripeptide HpgCV or the tripeptide PgCV, the NRPS comprising a first module M1 specific for Hpg or Pg, a second module M2 specific for C and a third module M3 specific for V An IPNS is further provided having an improved activity in this conversion, as well as an NRPS catalysing the formation of the tripeptides. Also a host cell is provided capable of fermentatively producing β-lactam antibiotics with N-α-amino-hydroxyphenylacetyl or an N-α-aminophenylacetyl side chains.