摘要:
An electronic HEMT transistor structure comprises a heterojunction formed from a first layer, called a buffer layer, of a first wide bandgap semiconductor material, and a second layer of a second wide bandgap semiconductor material, with a bandgap width EG2 larger than that Eg1 of the first material, and a two-dimensional electron gas flowing in a channel confined in the first layer under the interface of the heterojunction. The first layer furthermore comprises a layer of a BGaN material under the channel, with an average boron concentration of at least 0.1%, improving the electrical performance of the transistor. Application to microwave power components.
摘要:
A semiconductor device for electron emission in a vacuum comprises a stack of two or more semi-conductor layers of N and P type according to sequence N/(P)/N forming a juxtaposition of two head-to-tail NP junctions, in materials belonging to the III-N family, two adjacent layers forming an interface. The semiconductor materials of the layers of the stack close to the vacuum, where the electrons reach a high energy, have a band gap Eg>c/2, where c is the electron affinity of the semiconductor material, the P-type semiconductor layer being obtained partially or completely, by doping impurities of acceptor type or by piezoelectric effect to exhibit a negative fixed charge in any interface between the layers, a positive bias potential applied to the stack supplying, to a fraction of electrons circulating in the stack, the energy needed for emission in the vacuum by an emissive zone of an output layer.
摘要翻译:用于真空中电子发射的半导体器件包括根据序列N /(P)/ N的两个或多个N型和P型半导体层的堆叠,形成两个头对尾NP连接的并置,材料 属于III-N族,两个相邻的层形成界面。 靠近真空的堆叠层的半导体材料,其中电子达到高能量,具有带隙Eg> c / 2,其中c是半导体材料的电子亲和力,P型半导体层是 通过掺杂受体类型的杂质或通过压电效应来获得部分或完全地获得,以在层之间的任何界面中显示负的固定电荷,施加到堆叠的积极偏置电势提供给堆叠中循环的一部分电子, 需要通过输出层的发射区在真空中发射。
摘要:
A semiconductor device for electron emission in a vacuum comprises a stack of two or more semi-conductor layers of N and P type according to sequence N/(P)/N forming a juxtaposition of two head-to-tail NP junctions, in materials belonging to the III-N family, two adjacent layers forming an interface. The semiconductor materials of the layers of the stack close to the vacuum, where the electrons reach a high energy, have a band gap Eg>c/2, where c is the electron affinity of the semiconductor material, the P-type semiconductor layer being obtained partially or completely, by doping impurities of acceptor type or by piezoelectric effect to exhibit a negative fixed charge in any interface between the layers, a positive bias potential applied to the stack supplying, to a fraction of electrons circulating in the stack, the energy needed for emission in the vacuum by an emissive zone of an output layer.
摘要翻译:用于真空中电子发射的半导体器件包括根据序列N /(P)/ N的两个或多个N型和P型半导体层的堆叠,形成两个头对尾NP结的并置,材料 属于III-N族,两个相邻的层形成界面。 靠近真空的堆叠层的半导体材料,其中电子达到高能量,具有带隙Eg> c / 2,其中c是半导体材料的电子亲和力,P型半导体层是 通过掺杂受体类型的杂质或通过压电效应来获得部分或完全地获得,以在层之间的任何界面中显示负的固定电荷,施加到堆叠的积极偏置电势提供给堆叠中循环的一部分电子, 需要通过输出层的发射区在真空中发射。
摘要:
The aim of the method is to prevent parasitic metallizations on the lateral walls of a raised pattern, which is used to self-align the electrode metallizations in a transistor. To this effect, a pair of semiconductor materials is introduced into the vertical pattern. These semiconductor materials react differently with respect to a pair of etching methods, so that a layer of one semiconductor material is etched to a greater extent than the other layer. The overhanging feature thus created interrupts the parasitic metallizations, if any, between the electrodes. The disclosed method can be applied to vertical structures.
摘要:
A bipolar transistor in which the emitter possesses a double "mesa" structure so as to achieve the maximum avoidance of the phenomena of electron/hole recombinations that have a deleterious effect on the current gain. The double mesa emitter can be made out of an alternation of materials M.sub.I /M.sub.II having different types of behavior with respect to a pair of etching methods. These materials may be GaInP and GaAs.