Abstract:
The invention relates to a nickel tungsten bulk catalyst, to a process for the manufacture of said catalyst and to the use of said catalyst for the hydrotreatment, in particular the hydrodesulphurisation and hydrodenitrogenation of hydrocarbon feedstock. The catalyst comprises nickel tungsten metal oxidic particles obtainable by a process comprising forming a slurry of a first solid metal compound comprising Group VNI metal nickel and a second solid metal compound comprising Group VIB metal tungsten in a protic liquid, reacting the first and second solid metal compounds at elevated temperature whereby the first and second solid metal compounds remain at least partly in the solid state during the entire reaction to form the nickel tungsten oxidic bulk catalyst.
Abstract:
The invention relates to a process for the preparation of a shaped bulk catalyst comprising metal oxide particles comprising one or more Group VIII metals and two or more Group VIB metals which process comprises the steps of providing first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals, providing separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, combining the first and second metal oxidic particles before and/or during shaping and shaping the combined first and second metal oxide particles to form a shaped bulk catalyst. The invention further relates to the shaped bulk catalyst obtainable with the process In sulphided or unsulphided form and the use thereof in hydroprocessing.
Abstract:
The invention relates to a bulk catalyst composition comprising metal oxidic particles comprising one or more Group VIII metals and two or more Group VIB metals, which bulk catalyst composition comprises first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals and separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, wherein the first and second oxidic bulk particles-are separately shaped to separate first and second shaped bulk catalyst particles, which are combined, preferably into a homogeneous blend, to form the bulk catalyst composition. The invention further relates to a process for the preparation of the bulk catalyst composition and to hydroprocessing a hydrocarbon feed using the bulk catalyst composition.
Abstract:
A method for upgrading a naphtha feed to a naphtha product containing less than about 10 wppm of nitrogen and less than about 15 wppm sulfur, the method comprising contacting said naphtha feed with hydrogen in the presence of a bulk multimetallic catalyst under effective reactor conditions to hydrodesulfurize and hydrodenitrogenize said naphtha feed to produce said naphtha product, wherein said bulk multimetallic catalyst comprises at least one Group VIII non-noble metal and at least two Group VIB metals.
Abstract:
The invention relates to a nickel tungsten bulk catalyst, to a process for the manufacture of said catalyst and to the use of said catalyst for the hydrotreatment, in particular the hydrodesulphurisation and hydrodenitrogenation of hydrocarbon feedstock. The catalyst comprises nickel tungsten metal oxidic particles obtainable by a process comprising forming a slurry of a first solid metal compound comprising Group VNI metal nickel and a second solid metal compound comprising Group VIB metal tungsten in a protic liquid, reacting the first and second solid metal compounds at elevated temperature whereby the first and second solid metal compounds remain at least partly in the solid state during the entire reaction to form the nickel tungsten oxidic bulk catalyst.
Abstract:
The present invention pertains to a process for effecting aromatics hydrogenation which process comprises contacting a hydrocarbon feedstock which contains 10–80 vol. % of aromatics in the presence of a hydrogen-containing gas with a catalyst which comprises hydrogenation metals on a carrier, wherein (i) the hydrogenation metals comprise a combination of platinum and palladium, and (ii) the carrier comprises silica-alumina dispersed in an alumina binder, wherein the alumina binder is present in an amount of 5–50 wt. %, based on the total weight of the silica-alumina and alumina binder present in the carrier, and wherein the silica-alumina comprises 5–50 wt. % of alumina, based on the weight of the silica-alumina.
Abstract:
The present invention pertains to a process for the hydroprocessing of hydrocarbon feedstocks wherein said hydrocarbon feedstocks are contacted, at hydroprocessing conditions, with a catalyst composition comprising at least one Group VIII non-noble metal component and at least two Group VIB metal components. The catalyst composition further comprises at least about 0.01 mole of an organic oxygen-containing additive per mole of the total of Group VIB metals and Group VIII non-noble metals present in the catalyst composition. The total of the Group VIII and Group VIB metal components, calculated as oxides, make up at least about 50 wt. % of the catalyst composition, calculated on dry weight.
Abstract:
The invention pertains to a process for the hydroprocessing of a hydrocarbon feedstock wherein said feedstock is contacted at hydroprocessing conditions with a catalyst composition which comprises bulk catalyst particles which comprise at least one Group VIII non-noble metal and at least two Group VIB metals. The Group VIII and Group VIB metals comprise from about 50 wt. % to about 100 wt. %, calculated as oxides, of the total weight of the bulk catalyst particles. The metals are present in the catalyst composition in their oxidic and/or sulfidic state. The catalyst composition has an X-ray diffraction pattern in which the characteristic full width at half maximum does not exceed 2.5° when the Group VIB metals are molybdenum, tungsten, and, optionally, chromium, or does not exceed 4.0° when the Group VIB metals are molybdenum and chromium or tungsten and chromium.
Abstract:
The invention relates to a bulk catalyst composition comprising metal oxidic particles comprising one or more Group VIII metals and two or more Group VIB metals, which bulk catalyst composition comprises first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals and separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, wherein the first and second oxidic bulk particles-are separately shaped to separate first and second shaped bulk catalyst particles, which are combined, preferably into a homogeneous blend, to form the bulk catalyst composition. The invention further relates to a process for the preparation of the bulk catalyst composition and to hydroprocessing a hydrocarbon feed using the bulk catalyst composition.
Abstract:
The invention relates to a process for the preparation of a shaped bulk catalyst comprising metal oxide particles comprising one or more Group VIII metals and two or more Group VIB metals which process comprises the steps of providing first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals, providing separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, combining the first and second metal oxidic particles before and/or during shaping and shaping the combined first and second metal oxide particles to form a shaped bulk catalyst. The invention further relates to the shaped bulk catalyst obtainable with the process In sulphided or unsulphided form and the use thereof in hydroprocessing.