Abstract:
A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
Abstract:
A method for providing functional checking of an inertial sensor, a first test signal having a first frequency being fed in at a test electrode of the inertial sensor for exciting a vibration of a vibration mass and a first response signal corresponding to the vibration mass is recorded, a second test signal having a second frequency different from the first frequency being fed in at the test electrode, a second response signal corresponding to the vibration mass being recorded, and the two response signals being evaluated. Also described is an inertial sensor.
Abstract:
A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
Abstract:
A circuit for converting the capacitive signal change of a differential capacitor into digital signals, the circuit including a sigma delta modulator. The differential capacitor is a component of the signal feed structure and the reference feedback structure of the sigma delta modulator.
Abstract:
An evaluation circuit for processing digital signals, the evaluation circuit processing an input data word and outputting an output data word, and a method for processing digital signals in an evaluation circuit, and to a sensor assembly.
Abstract:
An evaluation circuit for processing digital signals, the evaluation circuit processing an input data word and outputting an output data word, and a method for processing digital signals in an evaluation circuit, and to a sensor assembly.
Abstract:
A circuit for converting the capacitive signal change of a differential capacitor into digital signals, the circuit including a sigma delta modulator. The differential capacitor is a component of the signal feed structure and the reference feedback structure of the sigma delta modulator.