摘要:
In an ASIC element, vias are integrated into the CMOS processing of an ASIC substrate. The ASIC element includes an active front side in which the circuit functions are implemented. The at least one via is intended to establish an electrical connection between the active front side and the rear side of the element. The front side of the via is defined by at least one front-side trench which is completely filled, and the rear side is defined by at least one rear-side trench which is not completely filled. The rear-side trench opens into the filled front-side trench.
摘要:
An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
摘要:
A simple and cost-effective manufacturing method for hybrid integrated components including at least one MEMS element, a cap for the micromechanical structure of the MEMS element, and at least one ASIC substrate, using which a high degree of miniaturization may be achieved. The micromechanical structure of the MEMS element and the cap are manufactured in a layered structure, proceeding from a shared semiconductor substrate, by applying at least one cap layer to a first surface of the semiconductor substrate, and by processing and structuring the semiconductor substrate proceeding from its other second surface, to produce and expose the micromechanical MEMS structure. The semiconductor substrate is then mounted with the MEMS-structured second surface on the ASIC substrate.
摘要:
A hybrid integrated component including an MEMS element and an ASIC element is refined to improve the capacitive signal detection or activation. The MEMS element is implemented in a layered structure on a semiconductor substrate. The layered structure of the MEMS element includes at least one printed conductor level and at least one functional layer, in which the micromechanical structure of the MEMS element having at least one deflectable structural element is implemented. The ASIC element is mounted face down on the layered structure and functions as a cap for the micromechanical structure. The deflectable structural element of the MEMS element is equipped with at least one electrode of a capacitor system. At least one stationary counter electrode of the capacitor system is implemented in the printed conductor level of the MEMS element, and the ASIC element includes at least one further counter electrode of the capacitor system.
摘要:
A manufacturing method for a cap, for a hybrid vertically integrated component having a MEMS component a relatively large cavern volume having a low cavern internal pressure, and a reliable overload protection for the micromechanical structure of the MEMS component. A cap structure is produced in a flat cap substrate in a multistep anisotropic etching, and includes at least one mounting frame having at least one mounting surface and a stop structure, on the cap inner side, having at least one stop surface, the surface of the cap substrate being masked for the multistep anisotropic etching with at least two masking layers made of different materials, and the layouts of the masking layers and the number and duration of the etching steps being selected so that the mounting surface, the stop surface, and the cap inner side are situated at different surface levels of the cap structure.
摘要:
A method for manufacturing a component having an electrical through-connection is described. The method includes the following steps: providing a semiconductor substrate having a front side and a back side opposite from the front side, producing an insulating trench, which annularly surrounds a contact area, on the front side of the semiconductor substrate, filling the insulating trench with an insulating material, producing an electrical contact structure on the front side of the semiconductor substrate by depositing an electrically conductive material in the contact area, removing the semiconductor material remaining in the contact area on the back side of the semiconductor substrate in order to produce a contact hole which opens up the bottom side of the contact structure, and depositing a metallic material in the contact hole in order to electrically connect the electrical contact structure to the back side of the semiconductor substrate.
摘要:
A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element.
摘要:
A rotational rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated over a surface of a substrate; a driving arrangement being provided, by which the Coriolis element is induced to vibrations parallel to a first axis; a detection arrangement being provided, by which an excursion of the Coriolis elements is detectable on the basis of a Coriolis force in a second axis that is provided to be essentially perpendicular to the first axis; the first and second axis being parallel to the surface of the substrate; sensor elements that are designated to be at least partially movable with respect to the substrate being provided; a force-conveying arrangement being provided; the force-conveying arrangement being provided to convey a static force effect between the substrate and at least one of the sensor elements.
摘要:
A method for bonding two silicon substrates and a corresponding system of two silicon substrates. The method includes: providing first and second silicon substrates; depositing a first bonding layer of pure aluminum or of aluminum-copper having a copper component between 0.1 and 5% on a first bonding surface of the first silicon substrate; depositing a second bonding layer of germanium above the first bonding surface or above a second bonding surface of the second silicon substrate; subsequently joining the first and second silicon substrates, so that the first and the second bonding surfaces lie opposite each other; and implementing a thermal treatment step to form an eutectic bonding layer of aluminum-germanium or containing aluminum-germanium as the main component, between the first silicon substrate and the second silicon substrate, spikes which contain aluminum as a minimum and extend into the first silicon substrate, forming at least on the first bonding surface.
摘要:
A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.