Abstract:
Provided is a more suitable method for producing ceramic microparticles. The present invention uses at least two types of fluids to be processed; at least one of the fluids to be processed is a fluid containing a ceramic starting material liquid that mixes and/or dissolves a ceramic starting material in a basic solvent; of the fluids aside from the ceramic starting material liquid, at least one of the fluids to be processed is a fluid containing a solvent for precipitating ceramic microparticles; and ceramic microparticles are precipitated by mixing the fluid containing the ceramic starting material liquid and the fluid containing the solvent for precipitating ceramic microparticles within a thin film fluid formed between at least two surfaces (1,2) for processing that are provided facing each other, are able to approach and separate each other, and of which one is able to rotate with respect to the other. Ceramic microparticles having as increased crystallinity are obtained by mixing the fluid containing the precipitated ceramic microparticles precipitate and a fluid containing an acidic substance.
Abstract:
The problem addressed by the present invention is to provide a method for producing microparticles. Provided is a method that is for producing microparticles and that is characterized by containing at least the the following two steps: (I) a step for preparing a microparticle starting material solution by dissolving at least one type of microparticle starting material in a solvent using high speed stirring or ultrasonic waves, and (II) a step for precipitating microparticles by mixing the microparticle starting material solution and at least one type of precipitation solvent for precipitating the microparticle starting material in a thin film fluid formed between at least two processing surfaces that are disposed facing each other, are able to approach/separate from each other, and of which at least one rotates relative to the others.
Abstract:
The problem addressed by the present invention is to provide a high heat-resistant phthalocyanine. The phthalocyanine is separated by mixing a phthalocyanine separation solvent and a phthalocyanine solution wherein a phthalocyanine starting material is dissolved in a solvent. THe phthalocyanine is wherein having high heat resistance, the decomposition temperature of the separated phthalocyanine being at least 10° C. higher than the decomposition temperature of the phthalocyanine starting material. Also, the phthalocyanine solution may be the result of dissolving at least two types of phthalocyanine starting material in the solvent, the separated phthalocyanine being wherein containing a solid solvent of the at least two types of phthalocyanine starting material and by the decomposition temperature of the separated phthalocyanine being at least 10° C. higher than the decomposition temperature of a mixture of at least two types of phthalocyanine separated by mixing the phthalocyanine separation solvent and each of at least two types of phthalocyanine solution resulting from dissolving each of the at least two types of phthalocyanine starting material in a solvent.
Abstract:
Disclosed are: copper phthalocyanine pigments which each contain at least one kind of copper phthalocyanine microparticles that has high spectral characteristics and that is in a crystal form other than α-form; and processes for the production of the copper phthalocyanine microparticles. Provided are: a copper phthalocyanine pigment which contains at least one kind of copper phthalocyanine microparticles that is in a crystal form other than α-form and that exhibits, in a region of 380 nm to 780 nm, an absorption spectrum shape extremely similar to that of α-form copper phthalocyanine microparticles; and a process for the production of the copper phthalocyanine microparticles. Also provided are: a copper phthalocyanine pigment which contains at least one kind of copper phthalocyanine microparticles that is in a crystal form other than α- or ε-form and that exhibits a wavelength (λmax) of shorter than 478 nm in the transmission spectrum in a region of 380 nm to 780 nm, said wavelength (λmax) being a wavelength at which the maximum transmittance appears; and a process for the production of the copper phthalocyanine microparticles.
Abstract:
At least two types of fluids to be processed are mixed in a thin film fluid formed between at least two processing surfaces which are approachably and separably disposed facing each other. At least one processing surface rotates relative to the other, and a substance to be separated giving a controlled crystallite diameter is caused to separate. Specific conditions related to a fluid to be processed are varied to control the crystallite diameter of the substance to be separated. The specific conditions are the type of substance to be separated; the concentration of the substance to be separated included in the raw material fluid and/or substance included in the separating fluid; the pH of the raw material fluid and/or separating material fluid; the introduction temperature of the raw material fluid and/or separating fluid; and the introduction velocity of the raw material fluid and/or separating fluid.
Abstract:
The problem addressed by the present invention is to provide; solid solution pigment nanoparticles having a homogeneous solid solution ratio; a method for producing solid solution pigment nanoparticles having a homogeneous solid solution ratio in each primary particle; and a method for controlling the solid solution ratio of solid solution pigment nanoparticles. The solid solution pigment nanoparticles are prepared by precipitating at least two types of pigment by mixing a pigment precipitation solvent and; at least one type of pigment solution wherein at least two types of pigment are dissolved in a solvent: or at least two types of pigment solution wherein at least one type of pigment is dissolved in a solvent. The solid solution pigment nanoparticles are wherein the solid solution ratio of the at least two types of pigment in the primary particles of the precipitated solid solution pigment nanoparticles with respect to the ratio of the at least two types of pigment in the pigment solution mixed with the pigment precipitation solvent having a precision within 25%.
Abstract:
Provided is a method for producing an oxide and/or hydroxide wherein the ratio of oxide and hydroxide has been controlled. The method produces an oxide, a hydroxide, or a mixture thereof, and obtains an oxide and/or a hydroxide wherein the ratio of oxide and hydroxide has been controlled by means of changing a specific condition relating to at least one fluid to be processed introduced between processing surfaces (1, 2) when causing the precipitation of the oxide, hydroxide, or mixture thereof by mixing an basic fluid containing at least one type of basic substance and a fluid containing at least one type of metal or metallic substance as the fluids to be processed between the processing surfaces (1, 2) that are provided facing each other, are able to approach to and separate from each other, and of which at least one rotates relative to the other. The specific condition is at least one condition selected from the group consisting of: the speed of introduction of at least one of the fluids to be processed; and the pH of at least one of the fluids to be processed.
Abstract:
At least two types of fluids to be processed are mixed in a thin film fluid formed between at least two processing surfaces which are approachably and separably disposed facing each other. At least one processing surface rotates relative to the other, and a substance to be separated giving a controlled crystallite diameter is caused to separate. Specific conditions related to a fluid to be processed are varied to control the crystallite diameter of the substance to be separated. The specific conditions are the type of substance to be separated; the concentration of the substance to be separated included in the raw material fluid and/or substance included in the separating fluid; the pH of the raw material fluid and/or separating material fluid; the introduction temperature of the raw material fluid and/or separating fluid; and the introduction velocity of the raw material fluid and/or separating fluid.
Abstract:
A method for producing isolatable oxide microparticles or hydroxide microparticles using an apparatus that processes a fluid between processing surfaces of processing members that are arranged opposite each other so as to be able to approach to or separate from each other and such that at least one can rotate relative to the other. At least two fluids are mixed and oxide microparticles or hydroxide microparticles are separated, said two fluids including: a fluid containing a microparticle raw material solution comprising a microparticle raw material mixed into a solvent, and a fluid containing a microparticle-separation solution. Immediately thereafter, the following are mixed to obtain isolatable oxide microparticles or hydroxide microparticles: a fluid containing the separated oxide microparticles or hydroxide microparticles; and a fluid containing a microparticle-treatment-substance-containing solution that contains a microparticle-treatment substance that adjusts the dispersibility of the separated oxide microparticles or hydroxide microparticles.
Abstract:
A quinacridone pigment composition contains quinacridone microparticles which have durability and spectral characteristics equivalent to those required for a magenta color of a dye. The quinacridone pigment composition contains at least one type of quinacridone microparticles, wherein a difference between the maximum transmittance (Tmax1) and the minimum transmittance (Tmin) is 80% or more in a transmission spectrum at 350 nm to 800 nm and the difference between the maximum and minimum transmittance is 30% or more in a transmission spectrum at 350 nm to 580 nm, or the difference between the maximum transmittance (Tmax1) and the minimum transmittance (Tmin) is 80% or more in a transmission spectrum at 350 nm to 800 nm and the wavelength (λmax) at which the transmittance in a transmission spectrum at 350 nm to 500 nm becomes maximum is less than 430 nm. A method is provided for producing the quinacridone microparticles.