摘要:
A method of forming a silicon-on-insulator (SOI) substrate having a buried oxide region that has a greater content of thermally grown oxide as compared to oxide formed by implanted oxygen ions is provided. Specifically, the inventive SOI substrate is formed by utilizing a method wherein oxygen ions are implanted into a surface of a Si-containing substrate that includes a sufficient Si thickness to allow for subsequent formation of a buried oxide region in the Si-containing substrate which has a greater content of thermally grown oxide as compared to oxide formed by the implanted oxygen ions followed by an annealing step. The sufficient Si thickness can be obtained by (i) forming a Si layer on the surface of the implanted substrate prior to annealing; (ii) conducting a high-energy, high-dose oxygen implant to ensure that the oxygen ions are implanted a sufficient distance from the surface of the Si-containing substrate; or (iii) conducting a high-energy, low-dose oxygen implant so that less implanted oxide is present in the Si-containing substrate.
摘要:
The present invention is directed to a structure for packaging electronic devices, such as semiconductor chips, in a three dimensional structure which permits electrical signals to propagate both horizontally and vertically. The structure is formed from a plurality of assemblies. Each assembly is formed from a substrate having disposed on at least one surface a plurality of electronic devices. Each assembly is disposed in a stack of adjacent assemblies. Between adjacent assemblies there is an electrical interconnection electrically interconnecting each assembly. The electrical interconnection formed from an elastomeric interposer having a plurality of apertures extending therethrough. The array of apertures corresponds to the array of electronic devices on the substrates. The aperture and electrical interconnection is disposed over the array of electronic devices so that the electrical interconnection between adjacent electronic devices. The stack of assemblies is compressed thereby compressing the electrical interconnection between adjacent assemblies. Methods for fabricating the electrical interconnection as a stand alone elastomeric sheet are described.
摘要:
A high density test probe is for testing a high density and high performance integrated circuits in wafer form or as discrete chips. The test probe is formed from a dense array of elongated electrical conductors which are embedded in an compliant or high modulus elastomeric material. A standard packaging substrate, such as a ceramic integrated circuit chip packaging substrate is used to provide a space transformer. Wires are bonded to an array of contact pads on the surface of the space transformer. The space transformer formed from a multilayer integrated circuit chip packaging substrate. The wires are as dense as the contact location array. A mold is disposed surrounding the array of outwardly projecting wires. A liquid elastomer is disposed in the mold to fill the spaces between the wires. The elastomer is cured and the mold is removed, leaving an array of wires disposed in the elastomer and in electrical contact with the space transformer The space transformer can have an array of pins which are on the opposite surface of the space transformer opposite to that on which the elongated conductors are bonded. The pins are inserted into a socket on a second space transformer, such as a printed circuit board to form a probe assembly. Alternatively, an interposer electrical connector can be disposed between the first and second space transformer.
摘要:
A high density integrated test probe and method of fabrication is described. A group of wires are ball bonded to contact locations on the surface of a fan out substrate. The wires are sheared off leaving a stub, the end of which is flattened by an anvil. Before flattening a sheet of material having a group of holes is arranged for alignment with the group of stubs is disposed over the stubs. The sheet of material supports the enlarged tip. The substrate with stubs form a probe which is moved into engagement with contact locations on a work piece such as a drip or packaging substrate.
摘要:
A method of fabricating a defect induced buried oxide (DIBOX) region in a semiconductor substrate utilizing an oxygen ion implantation step to create a stable defect region; a low energy implantation step to create an amorphous layer adjacent to the stable defect region, wherein the low energy implantation steps uses at least one ion other than oxygen; oxidation and, optionally, annealing, is provided. Silicon-on-insulator (SOI) materials comprising a semiconductor substrate having a DIBOX region in patterned or unpatterned forms is also provided herein.
摘要:
A method of fabricating a defect induced buried oxide (DIBOX) region in a semiconductor substrate utilizing an oxygen ion implantation step to create a stable defect region; a low energy implantation step to create an amorphous layer adjacent to the stable defect region, wherein the low energy implantation steps uses at least one ion other than oxygen; oxidation and, optionally, annealing, is provided. Silicon-on-insulator (SOI) materials comprising a semiconductor substrate having a DIBOX region in patterned or unpatterned forms is also provided herein.
摘要:
A method of forming a silicon-on-insulator (SOI) substrate having a buried oxide region that has a greater content of thermally grown oxide as compared to oxide formed by implanted oxygen ions is provided. Specifically, the inventive SOI substrate is formed by utilizing a method wherein oxygen ions are implanted into a surface of a Si-containing substrate that includes a sufficient Si thickness to allow for subsequent formation of a buried oxide region in the Si-containing substrate which has a greater content of thermally grown oxide as compared to oxide formed by the implanted oxygen ions followed by an annealing step. The sufficient Si thickness can be obtained by (i) forming a Si layer on the surface of the implanted substrate prior to annealing; (ii) conducting a high-energy, high-dose oxygen implant to ensure that the oxygen ions are implanted a sufficient distance from the surface of the Si-containing substrate; or (iii) conducting a high-energy, low-dose oxygen implant so that less implanted oxide is present in the Si-containing substrate.
摘要:
A high density integrated test probe and method of fabrication is described. A group of wires are ball bonded to contact locations on the surface of a fan out substrate. The wires are sheared off leaving a stub, the end of which is flattened by an anvil. Before flattening a sheet of material having a group of holes is arranged for alignment with the group of stubs is disposed over the stubs. The sheet of material supports the enlarged tip. The substrate with stubs form a probe which is moved into engagement with contact locations on a work piece such as a drip or packaging substrate.
摘要:
The present invention is directed to a structure for packaging electronic devices, such as semiconductor chips, in a three dimensional structure which permits electrical signals to propagate both horizontally and vertically. The structure is formed from a plurality of assemblies. Each assembly is formed from a substrate having disposed on at least one surface a plurality of electronic devices. Each assembly is disposed in a stack of adjacent assemblies. Between adjacent assemblies there is an electrical interconnection means electrically interconnecting each assembly. The electrical interconnection means is formed from an elastomeric interposer. The elastomeric interposer is formed from an elastomeric material having a plurality of electrical conductors extending therethrough, either in a clustered or un-clustered arrangement. The electrical interconnection means is fabricated having a plurality of apertures extending therethrough. The array of apertures corresponds to the array of electronic devices on the substrates. The aperture and electrical interconnection means is disposed over the array of electronic devices so that the electrical interconnection means is between adjacent electronic devices. The stack of assemblies is compressed thereby compressing the electrical interconnection means between adjacent assemblies. The substrate or each assembly is formed from a thermally conductive material such as diamond. A heat dissipation means is thermally connected to the edges of the substrate to extract heat generated within the structure. Methods for fabricating the electrical interconnection means as a stand alone elastomeric sheet are described. The ends of the plurality of conductors in the electrical interconnection means are fabricated so that upon compression between adjacent assemblies there is a wiping action between the conductor ends and contact locations on the adjacent assemblies to form a good electrical contact therewith.