Abstract:
In a high temperature furnace adapted for fuel particle coating applications, an electrode ring forms a portion of the furnace wall, heating elements within the furnace being urged into conductive engagement with an internal surface of the electrode ring by means of adjustable spring mechanisms arranged outside the furnace and interconnected with the heating elements by elongated bolts in order to permit adjustment of the spring load without interrupting operation of the furnace. The spring mechanism provides nearly constant contact pressure between the heating elements and the electrode ring surface under varying thermal and physical conditions and prevents overheating and failure of the electrode ring.
Abstract:
The present invention discloses materials, systems and methods for creating metal foams to envelop targets, which involve the formulation of powdered thermite/metal matrices. Essentially, each matrix will include thermite and a foaming agent. Additionally, a thickening agent can be blended into the powdered thermite/metal matrix to create desirable foaming properties when the thermite is ignited. A heat sink agent can also be dispersed throughout the powdered thermite/metal matrix to limit temperature rise in the matrix during a thermite reaction. Further, a binder can be combined with the powdered thermite/metal matrix to hold the formulation together. In use, the formulation is delivered to the vicinity of the target where it is ignited. The resultant metal foam is intended to envelop and neutralize the target.
Abstract:
A method and apparatus for cryogenic removal of solid materials includes a wand connected in fluid communication with a cryogen fluid source. The wand directs the cryogen against a selected portion of solid material. The wand has a spray nozzle to direct the spray against an inner exposed surface of energetic material typically contained within a munition casing. The wand is connected to a mounting element to allow movement of the wand within the munition body. The munition is mounted on a rotatable base for rotating the munition and to expose the material to the cryogenic fluid spray. The cyrogenic fluid spray, such as liquid nitrogen, is utilized in a dry washout process to freeze and embrittle the surface layer either by precooling and fluid spray, or by spray alone. The embrittle layer is then eroded away by the spray into small particles for removal by pneumatic transport, vacuum, or other collection and removal system. A mechanism may be provided for vibrating the material to loosen the particles. In addition, adjustable abrading elements may engage and remove additional amounts of embrittled material. To conserve the amount of liquid nitrogen, compressed air or gas simultaneously or in alternating succession with jets of liquid nitrogen may be utilized further to fracture and remove the embrittled particles. The probe may be made of a material to establish electrical contact between the solid material and the wand to remove static electricity from the material.
Abstract:
A system and method for treating feedstocks containing solids, sludges or slurries that contain organics includes introducing the feedstock into a desorption chamber. In the desorption chamber, the temperature and pressure of the feedstock are elevated to volatilize a portion of the feedstock and thereby separate the feedstock into a volatile portion containing organics and a residue portion. Steam, water or oxidants can be injected into the desorption chamber to aid in the volatilization process. From the desorption chamber, the volatile portion of the feedstock is transferred to a reactor for hydrothermal treatment to oxidize or reform the organics in the volatile portion. In the hydrothermal reactor, the volatile portion may be reacted with excess oxidant and auxiliary fuel at a temperature between approximately 1000° F. and approximately 1800° F. and a pressure of between approximately 20 atmospheres and approximately 200 atmospheres.
Abstract:
A system and method for performing hydrothermal treatment includes a scraper formed as a hollow cylinder. The scraper is positioned in the reactor vessel with the scraper axis substantially co-linear with the longitudinal axis of the cylindrical reactor vessel. A mechanism is provided to rotate the scraper about the longitudinal axis of the reactor vessel. One or more elongated scraper bars are positioned inside the reactor vessel between the scraper and the longitudinal axis of the reactor vessel. Each scraper bar may be held stationary with respect to the reactor vessel, or each scraper bar may rotated relative to an axis passing through the scraper bar to remove any solids that have accumulated on the scraper or on the scraper bar. To prevent accumulation of precipitating solids on the scraper bar itself, each scraper bar may have internal cooling channels or the capability of releasing a purging fluid.
Abstract:
A system and method for treatment of a feed material includes a reactor chamber in a reactor vessel. The reactor vessel has a longitudinal axis which is vertically oriented so that gravitational forces act generally in a direction along the axis between a top and a bottom of the vessel. A feed material is introduced by a nozzle into the reactor chamber as a jet stream through the top end of the vessel. This jet stream causes back-mixing in the reactor chamber, contributing to rapid initiation of reaction and general down flow of material through the reactor chamber. The material in the reactor chamber can be quenched to dissolve sticky solids in the effluent before the effluent is discharged from the lower end of the vessel. Further, the reactor vessel can include a plug flow section to carry out additional reaction of the feed material.
Abstract:
Three embodiments of apparatus for gas coating particles suspended in a fluidized bed within a coating chamber are illustrated, each having a base plate with a center opening, an extension nozzle assembly arranged in the opening and mounted on a movable two-piece internally cooled gas probe for supplying reactant gas to the nozzle and an annular unloading passage surrounding the probe and in communication with a side unloading chute. In the three embodiments, different means are provided for raising and lowering the nozzle assembly to permit unloading of coated particles and provide access to the nozzle assembly.
Abstract:
The present invention features the use of salt-water mixtures to form brine reaction phases at supercritical temperatures, i.e., greater than 374° C., and at pressures of less than 500 bar. The conditions utilized allow high reaction rates to be attained in a dense medium at moderate pressures and temperatures.
Abstract:
Apparatus for coating particles with a substance contained in a reactant gas, the particles being suspended in a fluidized bed within a coating chamber, an elongated nozzle extending upwardly from the coating chamber base with an outlet for reactant gas being substantially above the base to direct the reactant gas into a dilute phase region of the particles. With the base of the chamber being an inverted conical member, coated particles are preferably removed from the chamber by means of a movable plug forming the apex of the conical member, the elongated nozzle preferably being mounted upon the unloading plug.