摘要:
A method of forming a semiconductor device using laser spike annealing is provided. The method includes providing a semiconductor substrate having a surface, forming a gate dielectric layer on the surface of the semiconductor substrate, laser spike annealing the gate dielectric layer, and patterning the gate dielectric layer and thus forming at least a gate dielectric. Source and drain regions are then formed to form a transistor. A capacitor is formed by connecting the source and drain regions.
摘要:
A semiconductor device and method for fabricating the same. The semiconductor device comprises a substrate with a gate stack thereon, wherein the gate stack comprises a high-k dielectric layer and a conductive layer sequentially overlying a portion of the substrate. An oxidation-proof layer overlies sidewalls of the gate stack. A pair of insulating spacers oppositely overlies sidewalls of the gate stack and the oxidation-proof layers thereon and a pair of source/drain regions is oppositely formed in the substrate adjacent to the gate stack, wherein the oxidation-proof layer suppresses oxidation encroachment between the gate stack and the substrate.
摘要:
A method for forming a high-K material layer in a semiconductor device fabrication process including providing a silicon semiconductor substrate or thermally growing interfacial oxide layer comprising silicon dioxide over the silicon substrate; treating with an aqueous base solution or nitridation and depositing a high-K material layer.
摘要:
Methods for rapid thermal processing of semiconductor substrates are provided. An exemplary method comprises directing radiant heat energy emitted from a heat source toward a backside surface of the semiconductor substrate. Systems for rapid thermal processing also are provided.
摘要:
A method for fabricating a portion of an integrated circuit on a semiconductor substrate. The method includes cleaning the surface of the substrate, and forming a thin insulate over the substrate. The method also includes depositing a high dielectric constant (high-k) material over the thin insulate, and then performing a hydrogen-based anneal on the high-k material. The method further includes performing an oxygen-based anneal on the high-k material, wherein the hydrogen-based and oxygen-based anneals occur sequentially.
摘要:
A method for fabricating a portion of an integrated circuit on a semiconductor substrate. The method includes cleaning the surface of the substrate, and forming a thin insulate over the substrate. The method also includes depositing a high dielectric constant (high-k) material over the thin insulate, and then performing a hydrogen-based anneal on the high-k material. The method further includes performing an oxygen-based anneal on the high-k material, wherein the hydrogen-based and oxygen-based anneals occur sequentially.
摘要:
A method for forming a high-K material layer in a semiconductor device fabrication process including providing a silicon semiconductor substrate or thermally growing interfacial oxide layer comprising silicon dioxide over the silicon substrate; treating with an aqueous base solution or nitridation and depositing a high-K material layer.
摘要:
A method for cleaning a process chamber in such a manner that chamber-cleaning chemicals or agents are incapable of remaining in the chamber after cleaning and chemically interfering with semiconductor fabrication or other processes subsequently carried out in the chamber. The method includes providing a repellant coating layer having a hydrophobic or hydrophilic polarity on the interior surfaces of a process chamber and using a cleaning agent having a polarity opposite that of the repellant coating layer to clean the chamber. Accordingly, the cleaning agent removes post-processing chemical residues from the interior chamber walls and other surfaces and is incapable of adhering to the surfaces and remaining in the chamber upon commencement of a subsequent process carried out in the chamber.
摘要:
A method for cleaning a process chamber in such a manner that chamber-cleaning chemicals or agents are incapable of remaining in the chamber after cleaning and chemically interfering with semiconductor fabrication or other processes subsequently carried out in the chamber. The method includes providing a repellant coating layer having a hydrophobic or hydrophilic polarity on the interior surfaces of a process chamber and using a cleaning agent having a polarity opposite that of the repellant coating layer to clean the chamber. Accordingly, the cleaning agent removes post-processing chemical residues from the interior chamber walls and other surfaces and is incapable of adhering to the surfaces and remaining in the chamber upon commencement of a subsequent process carried out in the chamber.