摘要:
The present invention is a method for manufacturing a bonded wafer including at least the steps of: forming an ion-implanted layer inside a bond wafer; bringing the ion-implanted surface of the bond wafer into close contact with a surface of a base wafer directly or through a silicon oxide film; and performing heat treatment for delaminating the bond wafer at the ion-implanted layer, wherein the heat treatment step for delaminating includes performing a pre-annealing at a temperature of less than 500° C. and thereafter performing a delamination heat treatment at a temperature of 500° C. or more, and the pre-annealing is performed at least by a heat treatment at a first temperature and a subsequent heat treatment at a second temperature higher than the first temperature. As a result, there is provided a method for manufacturing a bonded wafer having high quality, for example, mainly the reduction of defects, by forming a high bonding strength state at a lower temperature than the temperature at which the delamination is caused, in the manufacture of the bonded wafer by the Smart Cut method (registered trademark).
摘要:
The present invention is an SOI wafer comprising at least: an SOI layer; a silicon oxide film; and a base wafer, wherein the SOI layer has a plane orientation of (100), and the base wafer has a resistivity of 100 Ω·cm or more and a plane orientation different from (100). As a result, there is provided the SOI wafer and the manufacturing method thereof that have no complicated manufacturing step, defects on a bonding interface which are not practically a problem in number and a high interface state density (Dit) for trapping carriers on an interface of a BOX layer and the base wafer.
摘要:
A silicon epitaxial wafer having a silicon epitaxial layer grown by vapor phase epitaxy on a main surface of a silicon single crystal substrate, wherein the main surface of the silicon single crystal substrate is tilted with respect to a [100] axis at an angle θ in a [011] direction or a [0-1-1] direction from a (100) plane and at an angle Φ in a [01-1] direction or a [0-11] direction from the (100) plane, the angle θ and the angle Φ are less than ten minutes, and a dopant concentration of the silicon epitaxial layer is equal to or more than 1×1019/cm3. Even when an epitaxial layer having a dopant concentration of 1×1019/cm3 or more is formed on the main surface of the silicon single crystal substrate, stripe-shaped surface irregularities on the epitaxial layer are inhibited.
摘要:
The present invention is a method for manufacturing a bonded wafer by an ion implantation delamination method including at least the steps of, bonding a bond wafer having a micro bubble layer formed by gas ion implantation with a base wafer to be a supporting substrate, delaminating the bond wafer along the micro bubble layer as a boundary to form a thin film on the base wafer, the method comprising, cleaning the bonded wafer after delaminating the bond wafer using ozone water; performing rapid thermal anneal process under a hydrogen containing atmosphere; forming a thermal oxide film on a surface layer of the bonded wafer by subjecting to heat treatment under an oxidizing gas atmosphere and removing the thermal oxide film; subjecting to heat treatment under a non-oxidizing gas atmosphere. As a result, the method for manufacturing a bonded wafer, which can remove the damage caused by the ion implantation and can suppress a occurrence of the concave defects without deterioration of surface roughness on the surface of the thin film of the bonded wafer after delamination is provided.
摘要:
A method for manufacturing a bonded wafer by forming an ion implanted layer in a bond wafer; bonding an ion implanted surface of the bond wafer to a surface of a base wafer directly or through a silicon oxide film; and performing a delamination heat treatment. After the formation of the ion implanted layer and before the bonding, a plasma treatment is carried out with respect to a bonding surface of at least one of the bond wafer and the base wafer. The delamination heat treatment is carried out at a fixed temperature by directly putting the bonded wafer into a heat-treating furnace whose furnace temperature is set to the fixed temperature less than 475° C. without a temperature increasing step.
摘要:
A method of manufacturing an SOI wafer includes a bonding step, a thinning and a bonding annealing step. Assuming refractive index n1 of SiO2 as 1.5, refractive index n2 of Si as 3.5, and optical thickness tOP of the silicon oxide film 2 and the SOI layer 15 in the infrared wavelength region as tOP=n1×t1+n2×t2, the thickness t1 of the silicon oxide film 2 and thickness t2 of the SOI layer so as to satisfy a relation of 0.1λ
摘要:
The present invention is a method of producing an annealed wafer wherein a silicon single crystal wafer having a diameter of 200 mm or more produced by the Czochralski (CZ) method is subjected to a high temperature heat treatment in an atmosphere of an argon gas, a hydrogen gas, or a mixture gas thereof at a temperature of 1100–1350° C. for 10–600 minutes, and before the high temperature heat treatmen, a pre-annealing is performed at a temperature less than the temperature of the high temperature heat treatment, so that the growth of slip dislocations is suppressed by growing oxide precipitates. Thereby, there is provided a method of producing an annealed wafer wherein the generation and growth of slip dislocations generated in a high temperature heat treatment are suppressed and the defect density in the wafer surface layer is lowered even in the case of a silicon single crystal wafer having a large diameter of 200 mm or more, and the annealed wafer.
摘要:
The present invention provides a method for producing a silicon wafer, which comprises growing a silicon single crystal ingot having a resistivity of 100 Ω·cm or more and an initial interstitial oxygen concentration of 10 to 25 ppma and doped with nitrogen by the Czochralski method, processing the silicon single crystal ingot into a wafer, and subjecting the wafer to a heat treatment so that a residual interstitial oxygen concentration in the wafer should become 8 ppma or less, and a method for producing a silicon wafer, which comprises growing a silicon single crystal ingot having a resistivity of 100 Ω·cm or more and an initial interstitial oxygen concentration of 8 ppma or less and doped with nitrogen by the Czochralski method, processing the silicon single crystal ingot into a wafer, and subjecting the wafer to a heat treatment to form an oxide precipitate layer in a bulk portion of the wafer, as well as silicon wafers produced by these production methods. Thus, there is provided a DZ-IG silicon wafer in which a DZ layer of high quality is formed, and which can maintain high resistivity even if the wafer is subjected to a heat treatment for device production.
摘要:
An execution multiplicity control system is provided which measures a load distribution over service objects for each case when one type of service requests are inputted into a distributed object system; calculates an effect index for when the execution multiplicity of each of the service objects is varied, based on the load distribution; measures, for each type of the service requests, the number of service requests actually inputted, to acquire a request distribution; calculates and stores a total effect index for when the execution multiplicity of each of the service objects is varied, based on the effect index and the request distribution; and controls the execution multiplicity of the service objects by applying a method of controlling the execution multiplicity of the service objects in descending order of the respective total effect indices calculated.
摘要:
According to the present invention, there are provided a method for producing a silicon single crystal wafer which contains oxygen induced defects by subjecting a silicon single crystal wafer containing interstitial oxygen to a heat treatment wherein the heat treatment includes at least a step of performing a heat treatment using a resistance-heating type heat treatment furnace and a step of performing a heat treatment using a rapid heating and rapid cooling apparatus, and a silicon single crystal wafer produced by the method. There can be provided a method for producing a silicon single crystal wafer which has a DZ layer of higher quality compared with a conventional wafer in a wafer surface layer part and has oxygen induced defects at a sufficient density in a bulk part and the silicon single crystal wafer.