摘要:
A spread spectrum clock signal generator and an accompanying method provide a spread spectrum clock signal of a reduced electromagnetic interference. The spread spectrum clock signal generator includes (a) a state machine, which maintains a current state of the spread spectrum clock signal generator, receives as input value a next state of the spread spectrum clock signal generator and generates a clock phase selection signal based on the current and next states; (b) a random number generator for generating the next state; and (c) a waveform generation circuit for generating a spread spectrum clock signal based on the clock phase selection signal.
摘要:
A buffer with reduced output swing characterized by a CMOS logic level compatible input, an output adapted to develop a reduced voltage swing output signal, and a precharged converter circuit coupled between the output and the input for converting the input signal to the output signal. The precharged converter circuit includes a voltage range conversion stage coupling the input to the output of the buffer and a precharger stage coupled to the voltage range conversion stage to provide the voltage range conversion stage with a ready supply of charge to quickly change the output signal in response to a change in the input signal. A method for reducing output swing on a buffer includes precharging a voltage range conversion circuit capable of developing an output signal which is variable within an output range and coupling the conversion circuit to an input signal which is variable within an input range which is larger than the output range.
摘要:
A ring-style, multi-stage VCO of a phase lock loop circuit includes two or more differential amplifier stages. The phase lock loop includes a lowpass filter connected between a control voltage terminal and a voltage-to-current converter stage, which includes a first source-follower MOS transistor M1 with a source resistor R1 and a second diode-connected MOS transistor M2 connected to its drain terminal. A differential amplifier stage includes a current-source MOS transistor M10 having a gate terminal connected to the drain of the first MOS transistor M1 to current mirror the drain current of M1. The differential amplifier stage also includes a pair of MOS transistors M4 and M5 connected to the drain terminal of the current-source MOS transistor M10. The gate terminal of MOS transistor M4 is an IN terminal and the gate terminal of MOS transistor M5 is an IN.sub.-- terminal. The drain terminal of MOS transistor M4 provides an OUT.sub.-- signal for the differential amplifier stage and the drain terminal of MOS transistor M5 provides an OUT signal for the differential amplifier stage. A MOS transistor M6 forms a load impedance for MOS transistor M4 and a MOS transistor M7 forms a load impedance for MOS transistor M5. The gate terminals of M6 and M7 are connected to the voltage control input terminal of the phase lock loop.
摘要:
A method provides a bidirectional communication protocol for data communication between a first device and a second device. The method includes: during a first time interval, transmitting data from the first device to the second device; and during a second time interval, (a) after the occurrence of a first event, (i) suspending data transmission from the first device to the second device; and (ii) transmitting control data from the second device to the first device; and (b) after the occurrence of a second event, transmitting control data from the first device to the second device.
摘要:
In a transceiver, a transmitter circuit is provided substantially the same common-mode voltage regardless of whether the transceiver is in a transmitting or receiving mode. In one embodiment, the transmitter circuit includes a driver circuit which, in the transmission mode of the transceiver, drives an output differential signal, and which, in the receiving mode of the transceiver, provides a termination circuit for an input differential signal. A variable resistor is provided to connect between a supply voltage and the driver circuit, the resistance of the variable resistor is selected such that the common-mode voltage of the output differential signal of the transmission mode substantially equals the common-mode voltage in the input differential signal of the receiving mode.
摘要:
In a transceiver, a transmitter circuit is provided substantially the same common-mode voltage regardless of whether the transceiver is in a transmitting or receiving mode. In one embodiment, the transmitter circuit includes a driver circuit which, in the transmission mode of the transceiver, drives an output differential signal, and which, in the receiving mode of the transceiver, provides a termination circuit for an input differential signal. A variable resistor is provided to connect between a supply voltage and the driver circuit, the resistance of the variable resistor is selected such that the common-mode voltage of the output differential signal of the transmission mode substantially equals the common-mode voltage in the input differential signal of the receiving mode.
摘要:
A differential output buffer formed on a monolithic semiconductor substrate characterized by a bias generator coupled to a voltage source and a output stage coupled to the bias generator. The bias generator develops a bias output having a voltage level less than that of the voltage source. The output stage is responsive to a pair of complementary CMOS logic level inputs and uses the bias output of the bias generator to develop a pair of corresponding, low voltage swing outputs. In one embodiment the bias generator and the output stage operate in an open-loop and produce output signals which swing approximately two volts and in another embodiment the bias generator and the output stage operate in a closed-loop configuration and produce output signals which swing approximately one volt.
摘要:
A receiver is configured as a multistage differential amplifier. A front differential transconductance amplifier provides complementary outputs which respectively control current sources for an intermediate differential amplifier and a final differential amplifier. The output of the intermediate differential amplifier controls the mirror-current load of the final differential amplifier. The final current source and the final mirror-current load are controlled so that they induce a push-pull effect on the current output. When a high output is required, the output current is increased to charge the output capacitance more quickly. When a low output is required, the augmented current source drains the output capacitance more quickly. The net result is an enhanced slew rate for the receiver. The receiver can thus operate at higher frequencies and handle greater information rates.
摘要:
A ring-style, multi-stage VCO of a phase lock loop circuit includes two or more differential amplifier stages. The phase lock loop includes a lowpass filter connected between a control voltage terminal and a voltage-to-current converter stage, which includes a first source-follower MOS transistor M1 with a source resistor R1 and a diode-connected MOS transistor M2 connected to its drain terminal. A current-source MOS transistor M8 has a gate terminal connected to the drain of the first MOS transistor M1 such that the transistor M8 mirrors current of transistor M1. A diode-connected transistor M9 has its gate terminal and its drain terminal connected together and also to the drain terminal of transistor M8. A differential amplifier stage includes a current-source MOS transistor M10 having a gate terminal connected to the drain of the first MOS transistor M1 to current mirror the drain current of M1. The differential amplifier stage also includes a pair of MOS transistors M4 and M5 connected to the drain terminal of the current-source MOS transistor M10. The gate terminal of MOS transistor M4 is an IN terminal and the gate terminal of MOS transistor M5 is an IN.sub.-- terminal. The drain terminal of MOS transistor M4 provides an OUT.sub.-- signal for the differential amplifier stage and the drain terminal of MOS transistor M5 provides an OUT signal for the differential amplifier stage. A MOS transistor M6 forms a load impedance for MOS transistor M4 and a MOS transistor M7 forms a load impedance for MOS transistor M5. The gate terminals of M6 and M7 are connected to the drain terminal of transistor M9.
摘要:
An output buffer contains a totem-pole structure of four CMOS transistors. The top two are PMOS devices and the bottom two are NMOS devices. The top and bottom transistors function as output current switches which alternatively turn on and off the current flow from either VSS or VDD to the resistive termination load Rt. The middle two devices are connected to DC voltage references which control a precise amounts of current sourced to a load using a precision current source and sunk from a load using and to a precision current sink. The reference voltages for the precision current source and the current sink uses a negative feedback circuit which is referenced to a resistor ladder and a current source controlled by a band-gap reference source. This allows for on-chip referencing of ECL levels and control of reference voltages and currents in spite of variation is process, voltage, and temperature. Internal ECL reference levels signals V.sub.OL and V.sub.OH are used to control the output levels. Operational amplifiers drive the respective transistors such that voltage at the drains of the current source and sink transistors equals the ECL reference inputs VOH and VOL. These control voltages generate a precise currents through a replica stage and are also applied to the output stage. All of the devices in the reference control circuit are scaled to reduce DC power dissipation. For differential operation, a second totem-pole driver circuit is used with the inverse input data signal for controlling the output current switches.