摘要:
A system includes a memory controller and a plurality of semiconductor devices that are series-connected. Each of the devices has memory core for storing data. The memory controller provides a clock signal for synchronizing the operations of the devices. Each device includes a phase-locked loop (PLL) that is selectively enabled or disabled by a PLL enable signal. In each group, the PLLs of a selected number of devices are enabled by PLL enable signals and the other devices are disabled. The enabled PLL provides a plurality of reproduced clock signals with a phase shift of a multiple of 90° in response to an input clock signal. The data transfer is synchronized with at least one of the reproduced clock signals. In the devices of disabled PLLs, the data transfer is synchronized with the input clock signal. The enabled PLL and disabled PLL cause the devices to be the source and the common synchronous clocking, respectively. The devices can be grouped. The devices of one group can be structured by multiple chip packages.
摘要:
In a semiconductor device having a terminal connected to an internal portion, a termination circuit for providing on-die termination for the terminal of the device. The termination circuit comprises a plurality of transistors, including at least one NMOS transistor and at least one PMOS transistor, connected between the terminal and a power supply; and control circuitry for driving a gate of each of NMOS transistor with a corresponding NMOS gate voltage and for driving a gate of each PMOS transistor with a corresponding PMOS gate voltage, the control circuitry being configured to control the NMOS and PMOS gate voltages so as to place the transistors in an ohmic region of operation when on-die termination is enabled. The power supply supplies a voltage that is less than each said NMOS gate voltage and greater than each said PMOS gate voltage.
摘要:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
摘要:
This invention describes an improved high bandwidth chip-to-chip interface for memory devices, which is capable of operating at higher speeds, while maintaining error free data transmission, consuming lower power, and supporting more load. Accordingly, the invention provides a memory subsystem comprising at least two semiconductor devices; a main bus containing a plurality of bus lines for carrying substantially all data and command information needed by the devices, the semiconductor devices including at least one memory device connected in parallel to the bus; the bus lines including respective row command lines and column command lines; a clock generator for coupling to a clock line, the devices including clock inputs for coupling to the clock line; and the devices including programmable delay elements coupled to the clock inputs to delay the clock edges for setting an input data sampling time of the memory device.
摘要:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
摘要:
A system includes a memory controller and a plurality of semiconductor devices that are series-connected. Each of the devices has memory core for storing data. The memory controller provides a clock signal for synchronizing the operations of the devices. Each device includes a phase-locked loop (PLL) that is selectively enabled or disabled by a PLL enable signal. In each group, the PLLs of a selected number of devices are enabled by PLL enable signals and the other devices are disabled. The enabled PLL provides a plurality of reproduced clock signals with a phase shift of a multiple of 90° in response to an input clock signal. The data transfer is synchronized with at least one of the reproduced clock signals. In the devices of disabled PLLs, the data transfer is synchronized with the input clock signal. The enabled PLL and disabled PLL cause the devices to be the source and the common synchronous clocking, respectively. The devices can be grouped. The devices of one group can be structured by multiple chip packages.
摘要:
A ternary content addressable memory (CAM) cell is disclosed for providing reduced or minimized matchline (ML) capacitance and for increasing current between matchline and tail-line in the case of a mismatch. The speed of a CAM cell is generally inversely proportional to its ML capacitance, and proportional to the current. Conventional ternary CAM cells have many matchline transistors, each contributing to the matchline capacitance. Embodiments of the present invention have a single matchline transistor between a matchline and a ground line, or tail-line, of the CAM cell. The single matchline transistor couples the matchline to the tail-line in response to a discharge signal from a compare circuit. The compare circuit can be divided into a pull-up section for driving a gate voltage level control node and a discharge section for discharging the gate voltage level control node, the discharge signal being provided at the gate voltage level control node.
摘要:
This invention describes an improved high bandwidth chip-to-chip interface for memory devices, which is capable of operating at higher speeds, while maintaining error free data transmission, consuming lower power, and supporting more load. Accordingly, the invention provides a memory subsystem comprising at least two semiconductor devices; a main bus containing a plurality of bus lines for carrying substantially all data and command information needed by the devices, the semiconductor devices including at least one memory device connected in parallel to the bus; the bus lines including respective row command lines and column command lines; a clock generator for coupling to a clock line, the devices including clock inputs for coupling to the clock line; and the devices including programmable delay elements coupled to the clock inputs to delay the clock edges for setting an input data sampling time of the memory device.
摘要:
A semiconductor device having a self test circuit including an embedded dynamic random access memory array for storing data, a self test controller for internally generating test data patterns and expected resulting data and for comparing the expected resulting data with actual resulting data, test interface circuitry for loading the test data patterns into the memory and reading back the actual resulting data from the memory, means for selectively programming a voltage level to be applied to a selected cell plate of the memory according to predetermined test requirements and means for storing an address of a defective memory cell. In addition, the semiconductor device includes means for repairing a defective memory row or column in response to a signal received from the self test controller.
摘要:
A symmetric finite impulse response filter for receiving a digital input signal and generates a filtered analog output signal for application to a balanced line, such as a tip and ring lead pair. Logic levels of predetermined symmetrical bit pairs of the digital input signal are detected and in response, predetermined corresponding capacitors are selectively switched between bias and reference voltages, thereby charging predetermined voltages proportional to the capacitances of the capacitors. The predetermined voltages are summed in an operational amplifier which, in response produces a filtered analog output signal. Individual capacitors are utilized for realizing each pair of symmetrical coefficients of the filter transfer function, resulting in considerable economy of size. A switched capacitor implementation results in high speed performance, simple design and low cost.