摘要:
The invention provides a method of nucleating silver halide particles wherein said nucleation is carried out in the presence of acid processed ossein (APO) gelatin or chain-extended acid processed ossein (CE-APO) gelatin and the composition formed therefrom.
摘要:
This invention describes the use of surfactants of the following types:Type A--Surfactant comprising 6 to 22 carbon atom hydrophobic tail with one or more attached hydrophilic chains comprising at least 8 oxyethylene and/or glycidyl ether groups that may or may not be terminated with a negative charge such as a sulfate group.Type B--Block oligomeric surfactants comprising hydrophobic polyoxypropylene blocks (A) and hydrophilic polyoxyethylene blocks (B) joined in the manner of A--B--A, B--A--B, A--B, (A--B.sub.n .tbd.G.tbd.(B--A).sub.n, or (B--A).sub.n .tbd.G(A--B).sub.n, where G is a connective organic moiety and n is between 1 and 3.Type C--Sugar surfactants, comprising between one to three 6 to 22 carbon atom hydrophobic tail with one or more attached hydrophilic mono or oligosaccharidic chains that may or may not be terminated by a negatively charged group such as a sulfate group.in combination with gelatin-grafted-polymer particles to obtain aggregation and defect free photographic multilayer coatings that are considerably low in pressure sensitivity.
摘要翻译:本发明描述了以下类型的表面活性剂的用途:A型表面活性剂,其包含6至22个碳原子的疏水尾部,其具有一个或多个附着的亲水链,其包含至少8个氧化乙烯和/或缩水甘油醚基团,其可以或可以不以 负电荷如硫酸根组。 包含以ABA,BAB,AB,(A-Bn 3BOND G 3BOND(BA)n或(BA)n 3BOND G)的方式连接的疏水性聚氧丙烯嵌段(A)和亲水性聚氧乙烯嵌段(B)的B型低聚表面活性剂 (AB)n,其中G是连接性有机部分,n在1和3之间。C型糖表面活性剂,包含1至3个6至22个碳原子的疏水尾部与一个或多个连接的亲水单糖或寡糖链, 或者可能不被带负电荷的基团如硫酸根基团终止,与明胶接枝聚合物颗粒组合以获得相当低的压敏度的聚集和无缺陷的照相多层涂层。
摘要:
This invention relates to a full-color hard copy imaging system and a process, where a multiply photosensitive donor sheet, comprising clear polymeric or an opaque paper base, coated sequentially with a first layer of patches of a cyan, a magenta, and a yellow dye, that are thermally diffusible, with a second layer also coated sequentially with patches of a red light sensitive, a green light sensitive or a blue light sensitive, negative or a positive working photoresist layer, in such a manner that each of the colored dye patches are in registry with their complementary color sensitive photoresist patches, is exposed with white light sequentially, three times in registry on the three primary light sensitive patches, through a multicolor image (a positive transparency or a photographic negative), to produce crosslinks, image wise, in the exposed areas in the case of the negative resist system, or to uncrosslink the resist structure image wise in the exposed areas for a positive working resist system. In the second step, the first color patch is laminated on to a receiver sheet that is composed of a clear plastic layer in which the chromogenic dyes are soluble, with or without a white reflective backing and the first color image is transferred to the receiver sheet by thermal evaporation. The image is formed due to the hindrance of diffusion of dye in the crosslinked regions of the resist layer in the donor sheet. In subsequent consecutive steps the two remaining color images are transferred, by similar thermal process in registry on to the receiver sheet, thereby forming a full-color image of the original image.
摘要:
It has been shown by Photon Correlation Spectroscopy than when additional hardener is added to below saturation gel-grafted polymer particles, the gel layer shrinks due to hardening, as there is no free gel left in solution. In films, such case-hardened gelatin-grafted soft polymer particles can act as highly elastic stress absorbing fillers. This is because the dry case-hardened shell is expected to form a thin hard shell around the soft polymer particles. It is shown that gelatin-grafted soft polymer particles and case-hardened gelatin-grafted soft polymer particles, incorporated in the emulsion layers of pressure sensitive photographic products, produce coatings with highly reduced pressure sensitivity without any developability or delamination concerns. In this invention the case-hardened gelatin-grafted polymer particles are preferred over the simple gelatin-grafted material. The core polymer particle can have diameters anywhere between 10 to 10.sup.8 nm with a monolayer of gelatin shell that is chemically bonded to its surface and the gelatin shell is further cross-linked with each other to hydrated thicknesses of between 5 to 20 nm.
摘要:
The invention is performed by providing a first flow of water and surfactant, a second flow comprising solvent, base and photographic material, and mixing said first and second streams and either simultaneously or immediately following thereof neutralizing said streams to prevent hydrolysis of a hydrolyzable surfactant and/or premature precipitation of particles before neutralization. The streams then may be immediately treated for formation into photographic materials. In a preferred method the first and second stream may be brought together immediately prior to a mixer with addition of acid directly into the mixer to neutralize the dispersion of fine particles.
摘要:
The invention is performed by providing a first flow of water and surfactant, a second flow comprising solvent, base and photographic material, and mixing said first and second streams and either simultaneously or immediately following thereof neutralizing said streams to prevent hydrolysis of a hydrolyzable surfactant and/or premature precipitation of particles before neutralization. The streams then may be immediately treated for formation into photographic materials. In a preferred method the first and second stream may be brought together immediately prior to a mixer with addition of acid directly into the mixer to neutralize the dispersion of fine particles.
摘要:
The invention is related to an aqueous ink composition comprising water, a coloring agent, and solid surfactant particles wherein said solid particles comprise a mixture of at least two surfactants with very low water solubility and with melting points between 40.degree. C. and 90.degree. C.
摘要:
This invention describes the coprecipitation of nanoparticulate pharmaceutical agent dispersion via a process that comprises the dissolution of the said pharmaceutical agent in combination with a crystal growth modifier (CGM) in an alkaline solution and then neutralizing the said solution with an acid in the presence of suitable surface-modifying surface-active agent or agents to form a fine particle dispersion of the said pharmaceutical agent, followed by steps of diafiltration clean-up of the dispersion and then concentration of it to a desired level. This process of dispersion preparation leads to microcrystalline particles of Z-average diameters smaller than 400 nm as measured by photon correlation spectroscopy. Various modification of precipitation schemes are described, many of which are suitable for large-scale manufacture of these agent dispersions. It has been discovered that coprecipitation with CGM leads to smaller particle size compared to a case where precipitation is carried out using the pharmaceutical agent alone. Thus, this dispersion of instant invention is expected to have greater bioavailability. The CGM compound is a compound that has at least about 75% of its chemical structure identical to that of the pharmaceutical agent.
摘要:
The invention creates a selective oxygen barrier around individual coupler or other photographically active particles by surrounding each particle with a layer of water applicable oxygen barrier polymer such as polyvinyl alcohol (PVA), which will also act as a steric barrier to coalescence of the particles. Photographic products formed with such materials are more dye stable. The dispersions of this invention are prepared by mechanical milling or homogenization procedures.
摘要:
It has been discovered that when polyalkylene oxide compounds or block polymeric or block oligomeric surface active compounds comprising at least a polyoxypropylene (POP) block and a polyoxyethylene (POE) block are added to conventional dispersions of yellow couplers (that is dispersions in which the dispersed particles have a particle size of 0.1 to 0.6 .mu.m), such dispersions in a coated silver halide photographic element produce substantially higher dye yield compared to the conventional dispersion without any additive. Further, the yellow dye formed from such dispersions containing the addenda of this invention are substantially more light stable compared to dispersions that does not contain such addenda.The invention is carried out just by adding required amounts of the said polyoxyethylene (POE)--polyoxypropylene (POP) compound to a preformed milled coupler dispersion prior to coating the photographic element.