Abstract:
A content management (CM) system is provided to centrally control operation of one or more connected devices by issuing control requests and/or data requests. In some situations the connected device(s) include devices that control presentation of television programming-related content, such as digital video recorder (“DVR”) devices and media center devices, and in other situations may include other types of media devices and/or other electromechanical (“E/M”) devices that may be centrally controlled, such as E/M devices for home automation that may operate independently or in conjunction with the media devices. In some situations, the CM system communicates with the connected devices via a network and using appropriate protocol(s), and may be accessed remotely via a network so as to allow a user to remotely operate the CM system. The CM system may further control searching, identification, selection, and presentation of pieces of media content by the connected device(s).
Abstract:
A computer system has a main display attached to a computer chassis. The computer chassis includes a high power, high performance main processor running applications on a first operating system platform. The auxiliary display module has a low power, low performance auxiliary processor, a small touch-screen display and a keypad. The main processor interfaces with a keyboard on the upper surface of the chassis and a main display. In a high power mode, there is no display and keypad input in the auxiliary display module. In a power sleep mode, power is removed from the first processor, the main display and many of the components in the computer chassis. However, key functions, such as email, a contact list, and an appointment calendar can be accessed using the auxiliary display module. In a low power mode, the main display shuts off and many of the components in the computer chassis are powered down. However, key functions, such as email, a contact list, an appointment calendar, and a media player, can be accessed using the auxiliary display module.
Abstract:
A microprocessor includes a processor unit with an internal bus and a programmable bus control unit with an external bus. The bus control unit interconnects the internal bus with the external bus through multiplexers, latches and control logic. An 8 and 16-bit multiplexed bus mode and an 8 and 16-bit non-multiplexed bus mode are programmable. The bus control unit generates all of the necessary control signals adjusting their timing to the respective bus type. Different bus configurations can be selected for several address ranges through different control registers. The timing of the bus signals is programmable to allow slower peripherals to be connected to the microprocessor.
Abstract:
A computer system has a main display attached to a computer chassis. The computer chassis includes a high power, high performance main processor running applications on a first operating system platform. The auxiliary display module has a low power, low performance auxiliary processor, a small touch-screen display and a keypad. The main processor interfaces with a keyboard on the upper surface of the chassis and a main display. In a high power mode, there is no display and keypad input in the auxiliary display module. In a power sleep mode, power is removed from the first processor, the main display and many of the components in the computer chassis. However, key functions, such as email, a contact list, and an appointment calendar can be accessed using the auxiliary display module. In a low power mode, the main display shuts off and many of the components in the computer chassis are powered down. However, key functions, such as email, a contact list, an appointment calendar, and a media player, can be accessed using the auxiliary display module.
Abstract:
A content management (CM) system is provided to centrally control operation of one or more connected devices by issuing control requests and/or data requests. In some situations the connected device(s) include devices that control presentation of television programming-related content, such as digital video recorder (“DVR”) devices and media center devices, and in other situations may include other types of media devices and/or other electromechanical (“E/M”) devices that may be centrally controlled, such as E/M devices for home automation that may operate independently or in conjunction with the media devices. In some situations, the CM system communicates with the connected devices via a network and using appropriate protocol(s), and may be accessed remotely via a network so as to allow a user to remotely operate the CM system. The CM system may further control searching, identification, selection, and presentation of pieces of media content by the connected device(s).
Abstract:
An electronic device, such as a hand-held portable computer, is provided with capability to operate an application during a low power mode. During the low power mode, portions of hardware, software, services, and/or other components of the portable computer that are not necessary to the operation of the application is suspended or otherwise deactivated. As each task is performed by the application, the components that are no longer needed for subsequent tasks to be performed by the application are also deactivated and reactivated as needed. The deactivation can be performed in sequence from the highest-level components to the lowest-level components to ensure that components that are needed by other components are not prematurely deactivated. A specific set of events transitions the portable computer out of the low power mode.
Abstract:
An electric control device generates control signals that control electrical devices. The control device has a multiplicity of control modules. At least some of the control modules have a comparator for comparing two values and they function in dependence on the various outcomes of comparison. One of more global comparators are provided for certain comparisons in the control device. Each of the global comparators operates on several or all of the control modules. The control modules operate not only in dependence on the comparisons in their respective comparators, but additionally in dependence on the comparison results in the global comparator.
Abstract:
An apparatus for furnishing instructions having a multi-stage pipeline processing unit for processing at least a "fetch instruction" phase, a "decode instruction" phase and an "execute instruction" phase, includes a memory; an address register having contents pointing to an instruction to be processed in said memory; an instruction register for receiving a loading of the instruction during an instruction loading phase; an arithmetic calculation unit for calculating addresses; an incrementing stage for incrementing the contents of said address register; and a multiplexer for selecting a calculated address or an incremented successor address. One embodiment also includes a first additional memory unit; a second additional memory unit; an address comparator; and a third additional memory unit. Another embodiment also includes a first additional memory unit; a second additional memory unit; an address comparator; and a third additional memory unit.
Abstract:
A system and method for operating a light emitting device utilizing charged quantum dots is described. In one embodiment, charged quantum dots are suspended in a liquid between an excitation plate and a cover plate. The excitation plate carries short-wave excitation light. Charged quantum dots near the surface of the excitation plate may emit light in response to an evanescent field generated by the short-wave excitation light undergoing total internal reflection within the excitation plate. The excitation plate and the cover plate may be coated with one or more transparent electrodes. The movement of charged quantum dots within the liquid may be controlled by applying one or more bias voltages to the one or more transparent electrodes. Light emission from a particular region near the surface of the excitation plate may be controlled by moving charged quantum dots into or out of the particular region.
Abstract:
A system and method for operating a light emitting device utilizing charged quantum dots is described. In one embodiment, charged quantum dots are suspended in a liquid between an excitation plate and a cover plate. The excitation plate carries short-wave excitation light. Charged quantum dots near the surface of the excitation plate may emit light in response to an evanescent field generated by the short-wave excitation light undergoing total internal reflection within the excitation plate. The excitation plate and the cover plate may be coated with one or more transparent electrodes. The movement of charged quantum dots within the liquid may be controlled by applying one or more bias voltages to the one or more transparent electrodes. Light emission from a particular region near the surface of the excitation plate may be controlled by moving charged quantum dots into or out of the particular region.