Abstract:
Provided is a resistive memory device and a method of manufacturing the resistive memory device that includes a bottom electrode, an insulating layer that is formed on the bottom electrode and has a hole that exposes the bottom electrode, a resistance layer and an intermediate layer which are formed in the hole, a switch structure formed on a surface of the intermediate layer, and an upper electrode formed on the switch structure.
Abstract:
A method for forming an MTJ structure suitable for use in a MRAM device having a bottom electrode including a layer of platinum, ruthenium, iridium, rhodium, osmium, palladium or their oxides and having reduced surface roughness to improve the hysteresis loop characteristics of the resulting MTJ structure. The bottom electrode layer may also combine the functions of both the seeding layer and bottom electrode of the conventional two-layer structure, thereby simplifying the manufacturing process.
Abstract:
Provided is a resistive memory device and a method of manufacturing the resistive memory device that includes a bottom electrode, an insulating layer that is formed on the bottom electrode and has a hole that exposes the bottom electrode, a resistance layer and an intermediate layer which are formed in the hole, a switch structure formed on a surface of the intermediate layer, and an upper electrode formed on the switch structure.
Abstract:
A method for forming an MTJ structure suitable for use in a MRAM device having a bottom electrode including a layer of platinum, ruthenium, iridium, rhodium, osmium, palladium or their oxides and having reduced surface roughness to improve the hysteresis loop characteristics of the resulting MTJ structure. The bottom electrode layer may also combine the functions of both the seeding layer and bottom electrode of the conventional two-layer structure, thereby simplifying the manufacturing process.
Abstract:
A method of etching a metal oxide layer formed on a metal layer is provided. The method includes mounting a specimen having the metal oxide layer and a photoresist on the metal oxide layer in a reaction chamber, wherein the metal oxide layer is formed on the metal layer and a pattern is formed on the photoresist. Primary etching of the metal oxide layer exposed by the photoresist may be performed using Cl2 gas in an inductively coupled plasma method. Secondary etching of residues remaining on an etched region of the metal oxide layer may be performed using BCl3 gas in the inductively coupled plasma method.
Abstract:
An etching method of a nickel oxide layer and a method of manufacturing a storage node of a resistive memory including the nickel oxide layer are provided. The method of etching the nickel oxide layer includes forming a nickel oxide layer on a substrate, forming a mask pattern on a desired region of the nickel oxide layer, removing the nickel oxide layer around the mask pattern using plasma generated from a mixed etching gas having a desired ratio of a main gas and an additive gas and removing the mask pattern.
Abstract:
Provided is a method of manufacturing a nano-sized MTJ cell in which a contact in the MTJ cell is formed without forming a contact hole. The method of forming the MTJ cell includes forming an MTJ layer on a substrate, forming an MTJ cell region by patterning the MTJ layer, sequentially depositing an insulating layer and a mask layer on the MTJ layer, exposing an upper surface of the MTJ cell region by etching the mask layer and the insulating layer at the same etching rate, and depositing a metal layer on the insulating layer and the MTJ layer.
Abstract:
A magnetoresistance device using TiN as a capping layer and a method of fabricating the same. The fabrication of the magnetoresistance device may be simpler and the magentoresistance device may be more stable and/or more reliable.
Abstract:
A method for forming an MTJ structure suitable for use in a MRAM device having a bottom electrode including a layer of platinum, ruthenium, iridium, rhodium, osmium, palladium or their oxides and having reduced surface roughness to improve the hysteresis loop characteristics of the resulting MTJ structure. The bottom electrode layer may also combine the functions of both the seeding layer and bottom electrode of the conventional two-layer structure, thereby simplifying the manufacturing process.
Abstract:
Provided is a method of manufacturing a nano-sized MTJ cell in which a contact in the MTJ cell is formed without forming a contact hole. The method of forming the MTJ cell includes forming an MTJ layer on a substrate, forming an MTJ cell region by patterning the MTJ layer, sequentially depositing an insulating layer and a mask layer on the MTJ layer, exposing an upper surface of the MTJ cell region by etching the mask layer and the insulating layer at the same etching rate, and depositing a metal layer on the insulating layer and the MTJ layer.