Abstract:
A light emitting diode includes a semiconductor substrate of a first conductivity type. A first electrode is formed on a part of the substrate. A reflection stack of the first conductivity type is formed on the substrate. An active layer is then formed on the reflection stack. An anti-reflection stack of a second conductivity type is grown on the active layer, and the anti-reflection stack consists of a plurality of layers, wherein each layer has a thickness of (m+1).lambda./2, where m is zero or a positive integer and .lambda. is a wavelength of radiation generated by the active layer. A window layer of the second conductivity type is formed on the anti-reflection stack. A second electrode is then formed on a part of the window layer.
Abstract:
A titanium layer is formed on a dielectric layer. A TiN layer is formed on the titanium layer to act as a barrier layer. A rapid thermal annealing is performed. A tungsten layer is deposited by useing chemical vapor deposition with N.sub.2 plasma treatment. In a preferred embodiment, the temperature of the deposition ranges from 300 to 500 degrees centigrade. The gas pressure of the process is about 2 to 4 torr. The power of the plasma is about 300 to 800 Further, the treatment time of the N.sub.2 plasma ranges from 50 to 150 seconds. An etching back step is carried to etch a portion of the tuugsten layer.
Abstract:
A plasma treatment method used to form improved PECVD silicon nitride film passivation layers over metal interconnections on ULSI circuits is achieved. The process is carried out in a single PECVD reactor. After depositing a thin silicon oxide stress-release layer over the metal lines, a plasma-enhanced CVD silicon nitride layer is deposited, and subsequently a plasma treatment step is carried out on the silicon nitride layer. The use of a sufficiently thin silicon nitride layer eliminates photoresist trapping at the next photoresist process step that would otherwise be trapped in the voids (keyholes) that typically form in the silicon nitride passivation layer between the closely spaced metal lines, and can cause corrosion of the metal. The plasma treatment in He, Ar, or a mixture of the two, is then used to densify the silicon nitride layer and to substantially reduce pinholes that would otherwise cause interlevel metal shorts.
Abstract:
A metal interconnection is formed on a dielectric layer. A pre-treatment is then performed to remove organic materials on the surface of the metal layer. The pre-treatment is done by plasma bombardment using NH.sub.3 and NO.sub.2 as the reaction gases. A thin oxide layer is subsequently deposited on the metal layer and on the dielectric layer. The oxide layer serves a buffer layer to eliminate the stress between the metal layer and subsequent silicon nitride layer. A silicon nitride layer is then formed on the thin oxide layer to act as a passivation layer.
Abstract:
A method was achieved for forming a multilayer passivation layer comprised of a silicon oxide/silicon nitride/silicon oxide/silicon nitride by depositing the layers consecutively in a single PECVD system. The method consists of depositing a first SiO.sub.2 layer that serves as a stress-release layer, a thin Si.sub.3 N.sub.4 layer that serves as a buffer layer that minimizes cracking and as a passivation layer that prevents mobile alkaline ion penetration, a thin second SiO.sub.2 layer to fill and seal any remaining cracks and pinholes in the first Si.sub.3 N.sub.4 layer, and a main Si.sub.3 N.sub.4 passivation layer that prevents water and/or other corrosive chemicals from attacking the metal. Since this multilayer passivation layer can be deposited essentially pinhole-free to a thickness that is less than the prior art's passivation layer of 8000 Angstroms needed to prevent pinholes, it can be used on 0.38 to 0.25 um DRAM technology, which eliminates voids that could otherwise trap photoresist which can later cause corrosion of the metal lines.
Abstract translation:通过在单个PECVD系统中连续沉积层来形成由氧化硅/氮化硅/氧化硅/氮化硅组成的多层钝化层的方法。 该方法包括沉积用作应力释放层的第一SiO 2层,用作最小化裂纹的缓冲层的薄Si 3 N 4层,以及防止移动碱性离子渗透的钝化层,稀的第二SiO 2层填充 并且密封第一Si 3 N 4层中的任何剩余的裂纹和针孔,以及防止水和/或其它腐蚀性化学物质侵蚀金属的主要Si 3 N 4钝化层。 由于这种多层钝化层可以基本上无针孔地沉积到比现有技术的防止针孔所需的8000埃的钝化层的厚度,所以它可以用于0.38到0.25微米的DRAM技术,这消除了否则的空隙 陷阱光致抗蚀剂可以后来导致金属线的腐蚀。
Abstract:
A semiconductor light emitting device, such as the light emitting diode (LED) or the laser diode (LD), having a structure in which a light emitting area is a double heterostructure or a multi-layer quantum well structure. The light emitting area is formed on a substrate. Subsequently, an electrically conductive oxide layer as a transparent window layer to eliminate the crowding effect is formed on the light emitting area. The substrate layer consists of a GaAs substrate and a GaAsP layer to increasing the band gap energy of the substrate. The electrically conductive oxide layer is formed of AlZnO(x) material, having a lower electrical resistivity and a high transparency in the visible wavelength region. The window layer is formed using a physical vapor deposition or a metalorganic chemical vapor deposition.
Abstract:
A method was achieved for forming a multilayer passivation layer comprised of a silicon oxide/silicon nitride/silicon oxide/silicon nitride by depositing the layers consecutively in a single PECVD system. The method consists of depositing a first SiO.sub.2 layer that serves as a stress-release layer, a thin Si.sub.3 N.sub.4 layer that serves as a buffer layer that minimizes cracking and as a passivation layer that prevents mobile alkaline ion penetration, a thin second SiO.sub.2 layer to fill and seal any remaining cracks and pinholes in the first Si.sub.3 N.sub.4 layer, and a main Si.sub.3 N.sub.4 passivation layer that prevents water and/or other corrosive chemicals from attacking the metal. Since this multilayer passivation layer can be deposited essentially pinhole-free to a thickness that is less than the prior art's passivation layer of 8000 Angstroms needed to prevent pinholes, it can be used on 0.38 to 0.25 um DRAM technology, which eliminates voids that could otherwise trap photoresist which can later cause corrosion of the metal lines.
Abstract translation:通过在单个PECVD系统中连续沉积层来形成由氧化硅/氮化硅/氧化硅/氮化硅组成的多层钝化层的方法。 该方法包括沉积用作应力释放层的第一SiO 2层,用作最小化裂纹的缓冲层的薄Si 3 N 4层,以及防止移动碱性离子渗透的钝化层,稀的第二SiO 2层填充 并且密封第一Si 3 N 4层中的任何剩余的裂纹和针孔,以及防止水和/或其它腐蚀性化学物质侵蚀金属的主要Si 3 N 4钝化层。 由于这种多层钝化层可以基本上无针孔地沉积到比现有技术的防止针孔所需的8000埃的钝化层的厚度,所以它可以用于0.38到0.25微米的DRAM技术,这消除了否则的空隙 陷阱光致抗蚀剂可以后来导致金属线的腐蚀。
Abstract:
A structure of a semiconductor light emitting device includes a GaAs substrate, a GaAsP interface substrate, a first cladding layer, an active layer, and a second cladding layer. The GaAsP interface substrate layer is formed on the GaAs substrate, in addition, the GaAsP interface substrate layer formed on the substrate is of a thickness such that the upper surface of the GaAsP interface substrate layer adjacent to the substrate is composed of single crystal. The first cladding layer of a first conductivity is formed on the GaAsP interface substrate layer. The active layer is formed on the first cladding layer, from which the light is generated in the active layer. The second cladding layer of a second conductivity is formed on the active layer.