Abstract:
A memory device comprising: at least one bank of memory cells that receives a first clock for clocking commands and a second clock for clocking data, wherein the second clock is activated based on a first command and deactivated based on a second command. The memory device further including a clock activation circuit configured to generate an enable signal based on the first command and a disable signal based on the second command, and a clock generator configured to generate the second clock based on a reference clock upon receipt of the enable signal.
Abstract:
The present invention relates to a system for safety of a vessel and a method for safety of the vessel, and more particularly, to a system for safety of a vessel and a method for safety of the vessel using a mobile terminal device. According to the exemplary embodiment of the present invention, it is possible to provide a vessel collision preventing function which is available only in high-price exclusive marine equipment by utilizing a radio communication function and a location tracking function of a mobile terminal device even to small and medium-sized vessels and furthermore, rapidly and accurately display a vessel which is in a collision risk and allow a user to specifically recognize a collision preventing alarm so as to prevent collisions of the vessels.
Abstract:
An apparatus for controlling a latency in a synchronous semiconductor device. The apparatus includes a first counting block for counting a cycle of a first clock signal to thereby generate a first binary code; a second counting block for counting a cycle of a second clock signal to thereby generate a second binary code. The second clock signal is obtained by delaying the first clock signal by a predetermined delay amount, A code comparison block stores the second binary code in response to a command and compares the first binary code with the second binary code to thereby generate a latency control signal.
Abstract:
A semiconductor chip package includes a substrate, a first layer disposed on the substrate and a second layer substantially similar to and disposed on the first layer. The first layer has a first input/output (I/O) circuit, a first through-via connected to the first input/output (I/O) circuit and a second through-via that is not connected to the first I/O circuit. The second layer has a second I/O circuit, a third through-via connected to the second I/O circuit and a fourth through-via that is not connected to the second I/O circuit. The first through-via is connected to the fourth through-via, and the second through-via is connected to the third through-via. The package maybe fabricated by stacking the layers, and changing the orientation of the second layer relative to the first to ensure that the first through-via is connected to the fourth through-via, and the second through-via is connected to the third through-via.
Abstract:
A stacked semiconductor memory device according to the inventive concepts may include a plurality of memory chips stacked above a processor chip, a plurality of TSVs, and I/O buffers. The TSVs may pass through the memory chips and are connected to the processor chip. I/O buffers may be coupled between all or part of the memory chips and the TSVs and may be selectively activated on the basis of defective states of the TSVs.
Abstract translation:根据本发明构思的叠层半导体存储器件可以包括堆叠在处理器芯片上方的多个存储器芯片,多个TSV和I / O缓冲器。 TSV可以通过存储器芯片并且连接到处理器芯片。 I / O缓冲器可以耦合在所有或部分存储器芯片和TSV之间,并且可以基于TSV的故障状态来选择性地激活。
Abstract:
A semiconductor memory device and a method for testing the same which optimizes operation conditions by detecting a test cell that may easily fail in a test among the memory cells passing a burn-in test, and detecting the worst operation conditions by performing the test on the test cell. The device and method reduce power consumption in a refresh or active operation. According to the device and method set forth, a test unit tests a test cell, controls operation conditions of the semiconductor memory device according to the test result, and outputs the operation conditions. A driving unit drives the semiconductor memory device using the operation conditions controlled by the test unit.
Abstract:
A data output buffer includes a driving unit and a control unit. The driving unit selectively performs a termination operation that provides a termination impedance to a transmission line coupled to an external pin, and a driving operation that provides a drive impedance to the transmission line while outputting read data. The control unit adjusts a value of the termination impedance and a value of the drive impedance based on an output voltage at the external pin during a termination mode, and controls the driving unit to selectively perform one of the termination operation and the driving operation during a driving mode.
Abstract:
A temperature sensing circuit of a semiconductor device includes a code signal generator, a comparator, a reference clock generator and a final temperature code signal generator. The code signal generator is configured to output a first count signal having an increase rate that varies according to a change in temperature. The comparator is configured to receive the first count signal and a control signal, compare the first count signal with the control signal and output a comparison signal. The reference clock generator is configured to generate a reference clock having a uniform period regardless of the change in temperature during an activation period of the comparison signal. The final temperature code signal generator is configured to count pulses of the reference clock, generate a second count signal, modify the second count signal using an offset value, and output the modified second count signal as a final temperature code signal.
Abstract:
A semiconductor device includes a plurality of pads, where an external reference resistor is connected to a first one of the pads, an impedance calibrating unit configured to generate an impedance calibration code corresponding to an impedance of the reference resistor and output the impedance calibration code to a code transmitting line during a normal operating mode, and an impedance matching unit configured to perform an impedance matching operation in response to the impedance calibration code during the normal operating mode. The impedance calibrating unit is configured to output a test code to the code transmitting line in response to a test signal during a test operating mode. The impedance matching unit is configured to serialize the test code to output the serialized test code to each of the other pads in response to the test signal during the test operating mode.
Abstract:
A temperature sensing circuit of a semiconductor device includes a code signal generator, a comparator, a reference clock generator and a final temperature code signal generator. The code signal generator is configured to output a first count signal having an increase rate that varies according to a change in temperature. The comparator is configured to receive the first count signal and a control signal, compare the first count signal with the control signal and output a comparison signal. The reference clock generator is configured to generate a reference clock having a uniform period regardless of the change in temperature during an activation period of the comparison signal. The final temperature code signal generator is configured to count pulses of the reference clock, generate a second count signal, modify the second count signal using an offset value, and output the modified second count signal as a final temperature code signal.