摘要:
Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
摘要:
A memory cell includes a transistor device comprising a pair of source/drains, a body comprising a channel, and a gate construction operatively proximate the channel. The memory cell includes a capacitor comprising a pair of capacitor electrodes having a capacitor dielectric there-between. One of the capacitor electrodes is the channel or is electrically coupled to the channel. The other of the capacitor electrodes includes a portion of the body other than the channel. Methods are also disclosed.
摘要:
An improved method of making CMOS surface channel transistors using fewer masking steps. In-situ doped poly silicon deposition can be used to reduce problems with poly depletion effects in transistor gates. In addition, using this method, the number of layers in each gate dielectric, the dielectric type, and dielectric thickness between n-channel and p-channel devices can be separately controlled. This method also allows the use of a lithography mask normally used to fabricate buried channel devices for use in fabricating surface channel devices, thus saving the manufacture of an additional mask.
摘要:
A method used during the formation of a semiconductor device reduces ion channeling during implantation of the wafer. The method comprises providing a semiconductor wafer and an unetched transistor gate stack assembly over the wafer. The unetched transistor gate stack assembly comprises a gate oxide layer, a control gate layer, a metal layer, and a dielectric capping layer. A patterned photoresist layer is formed over the unetched transistor gate stack assembly, then each of the capping layer, the metal layer, the control gate layer, and the gate oxide layer is etched to form a plurality of laterally-spaced transistor gate stacks. A screening layer is formed overlying the semiconductor wafer between the transistor gate stacks. A dopant is implanted into the semiconductor wafer through the screening layer, then the screening layer is removed.
摘要:
Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
摘要:
Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
摘要:
Trenches are formed into semiconductive material. Masking material is formed laterally over at least elevationally inner sidewall portions of the trenches. Conductivity modifying impurity is implanted through bases of the trenches into semiconductive material there-below. Such impurity is diffused into the masking material received laterally over the elevationally inner sidewall portions of the trenches and into semiconductive material received between the trenches below a mid-channel portion. An elevationally inner source/drain is formed in the semiconductive material below the mid-channel portion. The inner source/drain portion includes said semiconductive material between the trenches which has the impurity therein. A conductive line is formed laterally over and electrically coupled to at least one of opposing sides of the inner source/drain. A gate is formed elevationally outward of and spaced from the conductive line and laterally adjacent the mid-channel portion. Other embodiments are disclosed.
摘要:
An improved method of making CMOS surface channel transistors using fewer masking steps. In-situ doped poly silicon deposition can be used to reduce problems with poly depletion effects in transistor gates. In addition, using this method, the number of layers in each gate dielectric, the dielectric type, and dielectric thickness between n-channel and p-channel devices can be separately controlled. This method also allows the use of a lithography mask normally used to fabricate buried channel devices for use in fabricating surface channel devices, thus saving the manufacture of an additional mask.
摘要:
Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
摘要:
A memory cell includes a transistor device comprising a pair of source/drains, a body comprising a channel, and a gate construction operatively proximate the channel. The memory cell includes a capacitor comprising a pair of capacitor electrodes having a capacitor dielectric there-between. One of the capacitor electrodes is the channel or is electrically coupled to the channel. The other of the capacitor electrodes includes a portion of the body other than the channel. Methods are also disclosed.